(بهار و تابستان)                   برگشت به فهرست مقالات | برگشت به فهرست نسخه ها

XML English Abstract Print


دانشگاه شهید باهنر کرمان ، mohadesehsaid2014@uk.ac.ir
چکیده:   (725 مشاهده)
چکیده مبسوط
مقدمه: رشد و نمو و در نهایت تولید محصول در گیاهان تحت تأثیر عوامل محیطی متعدد قرار می‌گیرند. خشکی و شوری عمده تنش‌های محیطی هستند که بر تمامی مراحل جوانه‌زنی، رشد گیاه، ساختار اندام و فعالیت آن‌ها آثار جبران ناپذیر برجا می‌گذارد. مرحله جوانه‌زنی و استقرار گیاهچه حساسیت بیشتری نسبت به تنش‌های اسمزی و شوری دارند، در نتیجه ارزیابی شاخص¬های جوانه‌زنی تحت شرایط تنش به منظور کشت گیاه در محیط¬های خشک و شور اهمیت دارد.
مواد و روش‌ها: به منظور بررسی تأثیر غلظت­های مختلف تنش­ اسمزی و شوری بر جوانه­زنی و رشد اولیه گیاهچه کاملینا (Camelina sativa)، دو آزمایش بصورت جداگانه در قالب طرح کاملا تصادفی در آزمایشگاه دانشکده کشاورزی بردسیر، دانشگاه شهید باهنر کرمان در سال 1402 اجرا شد. در آزمایش نخست برای ایجاد پتانسیل اسمزی از محلول پلی اتیلن گلایکول (PEG6000) با غلظت­های 2/0-، 4/0- و 6/0- مگاپاسکال و در آزمایش دوم از NaCl با غلظت­های 50، 100 و 150 میلی­مولار استفاده گردید. همچنین از آب مقطر برای ایجاد سطح تنش صفر (شاهد) در هر دو آزمایش استفاده گردید.
یافته‌ها: نتایج نشان داد که تنش ملایم اسمزی (MPa 2/0-) و شوری (mM 50) اثر نامطلوب معنی­دار بر استقرار گیاهچه نداشت، ولی افزایش شدت تنش­های اسمزی و شوری، درصد و سرعت جوانه­زنی، شاخص طولی بنیه گیاهچه، وزن خشک گیاهچه،  طول ریشه­چه، وزن خشک ریشه­چه، طول ساقه­چه و وزن خشک ساقه­چه را بطور معنی داری کاهش داد. بطوری­که تنش خشکی 6/0- مگاپاسکال، طول و وزن خشک ریشه­چه و طول و وزن خشک ساقه­چه را به ترتیب حدود 4/40، 4/57، 2/49 و 3/53 درصد نسبت به شاهد کاهش داد. بالاترین سطح تنش شوری (150 میلی­مولار) موجب کاهش 8/37، 8/56، 3/45 و 4/55 درصد به ترتیب در طول و وزن خشک ریشه­چه و طول و وزن خشک ساقه­چه در مقایسه با شاهد گردید. افزایش محتوی مالون دی آلدهید، کربوهیدرات­های محلول و میزان آمینو اسیدهای آزاد در تنش متوسط (MPa 4/0-)  و شدید (MPa 6/0-)  اسمزی و تنش شوری 100 و 150 میلی مولار مشاهده گردید.
 نتیجه‌گیری: از آنجا که کاملینا گیاه جدیدی در ایران است، ارزیابی پاسخ این گیاه به سطوح مختلف تنش اسمزی و شوری در مرحله جوانه­زنی و رشد اولیه گیاهچه، امکان کشت و توسعه آن را در اراضی دیم مناطق مختلف کشور فراهم می­سازد. بنظر می­رسد که تنش ملایم خشکی (MPa 2/0-) و شوری (mM 50) تأثیر نامطلوب معنی­داری روی شاخص­های جوانه­زنی کاملینا نداشت ولی چنانچه سطح تنش از حد تحمل گیاه بالاتر رود منجر به کاهش مولفه­های جوانه­زنی گردید. البته توصیه کشت این گونه گیاهی نیازمند مطالعه پایداری، سازگاری و خصوصیات زراعی-اکولوژیکی آن می­باشد.

جنبه‌های نوآوری:
  1. کشت و ترویج کاملینا، ابتدا مستلزم تحقیقات بنیادی در خصوص بررسی کلیه مولفه­های جوانه­زنی و رشد اولیه گیاهچه تحت شرایط تنش­های خشکی و شوری می­باشد.
  2. آستانه تحمل گیاهچه کاملینا نسبت به پتانسیل­های آبی مختلف و تنش شوری بررسی گردید.
  3. حساسیت مولفه­های جوانی­زنی به تنش شوری بیشتر از تنش اسمزی بود.
شماره‌ی مقاله: 2
     
نوع مطالعه: پژوهشي | موضوع مقاله: فیزیولوژی بذر
دریافت: 1402/10/27 | ویرایش نهایی: 1403/5/16 | پذیرش: 1403/4/20

فهرست منابع
1. Abdul-baki, A.A., and Anderson, J.D. 1970. Viability and leaching of sugars from germinating barely. Crop Science, 10: 31-34. [DOI:10.2135/cropsci1970.0011183X001000010012x]
2. Açikbaş, S., Özyazici, M.A., Biçakçi, E. and Özyazici, G. 2023. Germination and seedling development performances of some soybean (Glycine max (L.) Merrill) cultivars under salinity stress. Turkish Journal of Range and Forage Science, 4(2): 108-118. [DOI:10.51801/turkjrfs.1387963]
3. Ahmed, M., Kheir, A., Mehmood, M.Z., Ahmad, S. and Hasanuzzaman, M. 2022. Changes in germination and seedling traits of sesame under simulated drought. Phyton, 91(4): 713-726. [DOI:10.32604/phyton.2022.018552]
4. Ahmed, Z., Waraich, E.A., Ahmad, R. and Shahbaz, M. 2017. Morpho-physiological and biochemical responses of camelina (Camelina sativa Crantz) genotypes under drought stress. International Journal of Agriculture and Biology, 19: 1-7. [DOI:10.17957/IJAB/15.0141]
5. Ahmed, Z., Waraich, E.A., Qi, Z., Gui, D., Shreef, M., Iqbal, H. and Shabbir, R.N. 2019. Physio-biochemical and yield responses of two contrasting Camelina sativa breeding lines under drought stress. International Journal of Agriculture and Biology, 22: 1187-1196.
6. Ansari, O., Shirghani, E. and Shabani, K. 2023. The effect of gibberellic acid application on germination and biochemical indices of deteriorated safflower seed (Carthamus tinctorius) under water stress conditions. Iranian Journal of Seed Research, 10(1): 19-41. [In Persian with English summary] [DOI:10.61186/yujs.10.1.19]
7. Bangar, P., Chaudhury, A., Tiwari, B., Kumar, S., Kumari, R. and Bhat, K.V., 2019. Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turkish Journal of Biology, 43(1): 58-69. [DOI:10.3906/biy-1801-64] [PMID] []
8. Bayram, M., Homaei, M., and Khosasi Bidgoli, A. 2022. Modeling oilseed camelina response to water stress. Iran Water and Soil Research, 52(12): 2985-3000. [In Persian with English summary]
9. Borzoo, S., Mohsenzadeh, S. and Kahrizi, D. 2021. Water-deficit stress and genotype variation induced alteration in seed characteristics of Camelina sativa. Rhizosphere, 20:100427. [DOI:10.1016/j.rhisph.2021.100427]
10. Čanak, P., Jeromela, A.M., Vujošević, B., Kiprovski, B., Mitrović, B., Alberghini, B., Facciolla, E., Monti, A. and Zanetti, F. 2020. Is drought stress tolerance affected by biotypes and seed size in the emerging oilseed crop Camelina?. Agronomy, 10(12): 1856. [DOI:10.3390/agronomy10121856]
11. Channaoui, S., El Idrissi, I.S., Mazouz, H. and Nabloussi, A. 2019. Reaction of some rapeseed (Brassica napus L.) genotypes to different drought stress levels during germination and seedling growth stages. Oilseeds and fats, Crops and Lipids, 26(23): 1-10. [DOI:10.1051/ocl/2019020]
12. Cirka, M., Kaya, A.R. and Eryigit, T. 2021. Influence of temperature and salinity stress on seed germination and seedling growth of soybean (Glycine max L.). Legume Research, 44(9): 1053-1059. [DOI:10.18805/LR-628]
13. Deilam, A., Rohani, H., Sabouri, H. and Pooralmadari, E.G.A. 2019. Effect of drought stress and salinity on germination, soluble carbohydrates and proline of Atriplex halimus. Iranian Journal of Seed Science and Research, 6(2): 245-255. [In Persian with English summary]
14. Du, Y., Zhao, Q., Chen, L., Yao, X. and Xie, F. 2020. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy, 10(2): 302-322. [DOI:10.3390/agronomy10020302]
15. El-Badri, A.M., Batool, M., AA Mohamed, I., Wang, Z., Khatab, A., Sherif, A., Ahmad, H., Khan, M.N., Hassan, H.M., Elrewainy, I.M. and Kuai, J. 2021. Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage. Antioxidants, 10(8): 1227. [DOI:10.3390/antiox10081227] [PMID] []
16. Fallah, F., Kahrizi, D., Rezaeizad, A., Zebarjadi, A., Zarei, L. and Doğan, H. 2023. A study of the morphological and agro-physiological characteristics of Camelina sativa (L.) doubled haploid lines. Journal of Genetic Resources, 9(1): 17-24.
17. Farhangi-Abriz, S. and Ghassemi-Golezani, K. 2016. Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. Journal of applied botany and food quality, 89: 243-248.
18. Farsaraei, S., Mehdizadeh, L. and Moghaddam, M. 2021. Seed priming with putrescine alleviated salinity stress during germination and seedling growth of medicinal pumpkin. Journal of Soil Science and Plant Nutrition, 21(3): 1782-1792. [DOI:10.1007/s42729-021-00479-z]
19. Furlan, A.L., Bianucci, E., Giordano, W., Castro, S. and Becker, D.F. 2020. Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiology and Biochemistry, 151: 566-578. [DOI:10.1016/j.plaphy.2020.04.010] [PMID]
20. Ghidoli, M., Ponzoni, E., Araniti, F., Miglio, D. and Pilu, R. 2023. Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges. Plants, 12(3): 570. [DOI:10.3390/plants12030570] [PMID] []
21. Ghorbani, M., Kahrizi, D. and Chaghakaboodi, Z. 2020. Evaluation of Camelina sativa doubled haploid lines for the response to water-deficit stress. Journal of Medicinal Plants and By-product, 9(2): 193-199.
22. Göre, M. 2023. Salt sensitivity and some physiological and morphological mechanisms of adaptation to salt stress in camelina. Journal of Elementology, 28(1): 75-87. [DOI:10.5601/jelem.2022.27.4.2346]
23. Guo, R., Shi, L., Jiao, Y., Li, M., Zhong, X., Gu, F., Liu, Q., Xia, X. and Li, H. 2018. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants, 10(2): ly016. [DOI:10.1093/aobpla/ply016] [PMID] []
24. Heath, R.L., and Packer, L. 1969. Photo peroxidation in isolated chloroplast. I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189-198.
25. Hmissi, M., Chaieb, M. and Krouma, A. 2023. Differences in the physiological indicators of seed germination and seedling establishment of durum wheat (Triticum durum Desf.) cultivars subjected to salinity stress. Agronomy, 13(7): 1718-1734. [DOI:10.3390/agronomy13071718]
26. Huang, P., He, L., Abbas, A., Hussain, S., Hussain, S., Du, D., Hafeez, M.B., Balooch, S., Zahra, N., Ren, X. and Rafiq, M. 2021. Seed priming with sorghum water extract improves the performance of camelina (Camelina sativa (L.) crantz.) under salt stress. Plants, 10(4): 749. [DOI:10.3390/plants10040749] [PMID] []
27. Hwang, M., and Ederer, G.M. 1975. Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. Journal of Clinical Microbiology, 1: 114-117. [DOI:10.1128/jcm.1.1.114-115.1975] [PMID] []
28. Jahan, M.S., Zhao, C.J., Shi, L.B., Liang, X.R., Jabborova, D., Nasar, J. and Zhou, X.B. 2023. Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings. Frontiers in Plant Science, 14: 1-14. [DOI:10.3389/fpls.2023.1193666] [PMID] []
29. Jumrani, K. and Bhatia, V.S. 2018. Combined effect of high temperature and water-deficit stress imposed at vegetative and reproductive stages on seed quality in soybean. Indian Journal of Plant Physiology, 23(2): 227-244. [DOI:10.1007/s40502-018-0365-9]
30. Kakar, H.A., Ullah, S., Shah, W., Ali, B., Satti, S.Z., Ullah, R., Muhammad, Z., Eldin, S.M., Ali, I., Alwahibi, M.S. and Elshikh, M.S. 2023. Seed priming modulates physiological and agronomic attributes of maize (Zea mays L.) under induced polyethylene glycol osmotic stress. American Chemical Society Omega (ACS Omega), 8(25): 22788-22808. [DOI:10.1021/acsomega.3c01715] [PMID] []
31. Kang, S.M., Shaffioue, S., Peter, O., Injamum-ul-hoque, M.D. and LEE, I.J. 2024. Physiological and molecular adaptation respones of soybean seedling under osmotic stress. Pakistan Journal of Botany, 56(3): 871-878. [DOI:10.30848/PJB2024-3(34)]
32. Kayacetin, F., Efeoglu, B. and Alizadeh, B. 2018. Effect of NaCl and PEG-Induced osmotic stress on germination and seedling growth properties in wild mustard (Sinapis arvensis L.). Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 28(1): 62-68.
33. Khalid, H., Kumari, M., Grover, A. and Nasim, M. 2015. Salinity stress to lerance of camelina investigated in vitro. Scientia Agriculturae Bohemica, 46(4): 137-144. [DOI:10.1515/sab-2015-0028]
34. Khan, W., Shah, S., Ullah, A., Ullah, S., Amin, F., Iqbal, B., Ahmad, N., Abdel-Maksoud, M.A., Okla, M.K., El-Zaidy, M. and Al-Qahtani, W.H. 2023. Utilizing hydrothermal time models to assess the effects of temperature and osmotic stress on maize (Zea mays L.) germination and physiological responses. BioMed Central Plant Biology, 23(1): 414-427. [DOI:10.1186/s12870-023-04429-y] [PMID] []
35. Khodabin, G., Tahmasebi Sarvestani, Z., Rad, A.H.S. and Modarres Sanavy, S.A.M. 2020. Effect of drought stress on certain morphological and physiological characteristics of a resistant and a sensitive canola cultivar. Chemistry and Biodiversity, 17(2): p.e1900399. [DOI:10.1002/cbdv.201900399] [PMID]
36. Kukrić, T., Jeromela, A.M., Nikolić, Z. and Jovičić, D. 2023. Comparative study on salt stress response of Camelina sativa and Carthamus tinctorius during germination. Journal of Agricultural Sciences (Belgrade), 68(2): 141-154. [DOI:10.2298/JAS2302141K]
37. Luo, Z., Szczepanek, A. and Abdel-Haleem, H. 2020. Genome-wide association study (GWAS) analysis of camelina seedling germination under salt stress condition. Agronomy, 10(9): 1444-1457. [DOI:10.3390/agronomy10091444]
38. Luyckx, A., Beghin, C., Quinet, M., Achadé, B., Prodjinoto, H., Gandonou, C.B. and Lutts, S. 2021. Salinity differently affects antioxidant content and amino acid profile in two cultivars of Amaranthus cruentus differing in salinity tolerance. Journal of the Science of Food and Agriculture, 101(15): 6211-6219. [DOI:10.1002/jsfa.11272] [PMID]
39. Maguire, J.D. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2: 176-177. [DOI:10.2135/cropsci1962.0011183X000200020033x]
40. Michel, B.E. and Kaufman, M.R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51: 914-916. [DOI:10.1104/pp.51.5.914] [PMID] []
41. Mokari, M., Ghaderi, A.H., and Alaei, J. 2023. Determining of optimum crop production function for estimating of Camelina grain yield under deficit irrigation and saline water use in pot planting conditions. Iranian Water Research Journal. 51(17/4): 13. [In Persian with English summary]
42. Momen, M.A., Khazaei, H. and Nabati, J. 2022. Effect of salinity stress on chickpea (Cicer ariethinum L.) genotypes in seedling stage under hydroponic conditions. Journal of Crop Breeding, 14(44): 18-30. [In Persian with English summary] [DOI:10.52547/jcb.14.44.18]
43. Mousavi, E., Omidi, H., Ayatollah Saeedizadeh, A. and Aghighi Shahverdi, M. 2021. The effect of biological pre-treatments on germination and physiological indices of pumpkin (Cucurbita pepo var. Styriaca) seedling under salt stress. Iranian Journal of Seed Research, 7(2): 33-53. [In Persian with English summary] [DOI:10.52547/yujs.7.2.33]
44. Pavli, O.I., Foti, C., Skoufogianni, G., Karastergiou, G., Panagou, A. and Khah, E.M. 2021. Effect of salinity on seed germination and seedling development of soybean genotypes. International Journal of Environmental Sciences & Natural Resources, 27(2): 556210. [DOI:10.19080/IJESNR.2021.27.556210]
45. Poudineh, Z., Fakheri, B.A., Sirosmehr, A.R. and Shojaei, S. 2018. Effect of drought stress on the morphology and antioxidant enzymes activity of Foeniculum vulgare cultivars in Sistan. Indian Journal of Plant Physiology, 23: 283-292. [DOI:10.1007/s40502-018-0370-z]
46. Qu, Z., Tian, Y., Zhou, X., Li, X., Zhou, Q., Wang, X. and Dong, S. 2023. Effects of exogenous sodium nitroprusside spraying on physiological characteristics of soybean leaves at the flowering stage under drought stress. Plants, 12(8): 1598-1613. [DOI:10.3390/plants12081598] [PMID] []
47. Radić, S., Štefanić, P.P., Lepeduš, H., Roje, V. and Pevalek-Kozlina, B. 2013. Salt tolerance of Centaurea ragusina L. is associated with efficient osmotic adjustment and increased antioxidative capacity. Environmental and Experimental Botany, 87: 39-48. [DOI:10.1016/j.envexpbot.2012.11.002]
48. Raihan, M.R.H., Nahar, K., Nowroz, F., Siddika, A. and Hasanuzzaman, M. 2023. Oilseed brassica responses and tolerance to salt stress. In Oilseed Crops-Uses, Biology and Production. IntechOpen.
49. Ramana, G.V., Padhy, S.P. and Chaitanya, K.V. 2012. Differential responses of four soybean (Glycine max. L) cultivars to salinity stress. Legume Research, 35(3): 185-193.
50. Roe, J.H. 1955. The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry, 212: 335-343. [DOI:10.1016/S0021-9258(18)71120-4] [PMID]
51. Shafighi, A., Ardakani, M.R., Rad, A.H.S., Alavifazel, M. and Rafiei, F. 2021. Grain yield and associated physiological traits of rapeseed (Brassica napus L.) cultivars under different planting dates and drought stress at the flowering stage. Italian Journal of Agronomy, 16(1): 1648-1660. [DOI:10.4081/ija.2020.1648]
52. Shahid, S.A., Zaman, M. and Heng, L. 2018. Soil Salinity: Historical Perspectives and a World Overview of the Problem. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham. pp: 43-53. [DOI:10.1007/978-3-319-96190-3_2]
53. Silva, M.F.D., Araújo, E.F., Silva, L.J.D., Amaro, H.T.R., Dias, L.A.D.S. and Dias, D.C.F.D.S. 2019. Tolerance of crambe (Crambe abyssinica Hochst) to salinity and water stress during seed germination and initial seedling growth. Ciência e Agrotecnologia, 43: e025418. [DOI:10.1590/1413-7054201943025418]
54. Teimoori, N., Ghobadi, M. and Kahrizi, D. 2023. The effect of silicon on improving the growth and biochemical characteristics of camelina (Camelina sativa L.) seedlings under saline conditions. Journal of Agricultural Engineering Soil Science and Agricultural Mechanization, (Scientific Journal of Agriculture), 46(1): 21-42. [In Persian with English summary]
55. Teimoori, N., Ghobadi, M. and Kahrizi, D. 2023a. Improving the growth characteristics and grain production of Camelina (Camelina sativa L.) under salinity stress by silicon foliar application. Agrotechniques in Industrial Crops, 3(1): 1-13.
56. Teimoori, N., Ghobadi, M. and Kahrizi, D. 2023b. The use of silicon in controlling osmotic stress and its effect on seed germination characteristics and seedling growth of Camelina. Iranian Journal of Seed Science and Technology, 12(3): 65-78. [In Persian with English summary].
57. Waraich, E.A., Ahmed, Z., Ahmed, R., Ashraf, M.Y. and Naeem, M.S. 2015. Physiological and biochemical attributes of Camelina sativa (L.) Crantz under water stress conditions. In Proceedings of the 17th ASA Conference: 20-24.
58. Wu, H.Z., Gao, Y., Zhang, Y., Yu, J., Kim, D.S., Chen, M., Wang, Y., Fan, Y., Zhang, H., Yan, X. and Zhang, C.J. 2023. Exogenous application of multi-walled carbon nanotubes (MWCNTs) and nano-Selenium (Nano-Se) alleviated the PEG-induced water deficit stress and improved the crop performance of camelina. Agronomy, 13(4): 979-992. [DOI:10.3390/agronomy13040979]
59. Xue, Z., Zhao, S., Gao, H. and Sun, S. 2014. The salt resistance of wild soybean (Glycine soja Sieb. et Zucc. ZYD 03262) under NaCl stress is mainly determined by Na+ distribution in the plant. Acta Physiologiae Plantarum, 36(1): 61-70. [DOI:10.1007/s11738-013-1386-7]
60. Yohannes, G., Kidane, L., Abraha, B. and Beyene, T. 2020. Effect of salt stresses on seed germination and early seedling growth of Camelina sativa L. Momona Ethiopian Journal of Science, 12(1):1-19. [DOI:10.4314/mejs.v12i1.1]
61. Younis, M.E., Rizwan, M. and Tourky, S.M. 2021. Assessment of early physiological and biochemical responses in chia (Salvia hispanica L.) sprouts under salt stress. Acta Physiologiae Plantarum, 43: 1-10. [DOI:10.1007/s11738-021-03285-3]
62. Zhao, M., Zhang, Q., Liu, H., Tang, S., Shang, C., Zhang, W., Sui, Y., Zhang, Y., Zheng, C., Zhang, H. and Liu, C. 2023. The osmotic stress-activated receptor-like kinase DPY1 mediates SnRK2 kinase activation and drought tolerance in Setaria. The Plant Cell, 35(10): 3782-3808. [DOI:10.1093/plcell/koad200] [PMID] []
63. Zuffo, A.M., Steiner, F., Aguilera, J.G., Teodoro, P.E., Teodoro, L.P.R. and Busch, A. 2020. Multi trait stability index: A tool for simultaneous selection of soya bean genotypes in drought and saline stress. Journal of Agronomy and Crop Science, 206(6): 815-822. [DOI:10.1111/jac.12409]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهشهای بذر ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.