1. Ahrens, W.H., Cox, D.J. and Budhwar, G. 1990. Use of the arcsine and square root transformations for subjectively determined percentage data. Weed Science, 38(4-5): 452-458.
https://doi.org/10.1017/S0043174500056824 [
DOI:10.1017/S0043174500056824.]
2. Amorim, D.J., dos Santos, A.R.P., da Piedade, G.N., de Faria, R.Q., da Silva, E.A.A. and Sartori, M.M.P. 2021. The Use of the Generalized Linear Model to Assess the Speed and Uniformity of Germination of Corn and Soybean Seeds. Agronomy, 11(3): 588.
https://doi.org/10.3390/agronomy11030588 [
DOI:10.3390/agronomy11030588.]
3. Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. and White, J.S.S. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology and evolution, 24(3):127-135.
https://doi.org/10.1016/j.tree.2008.10.008 [
DOI:10.1016/j.tree.2008.10.008.] [
PMID]
4. Carvalho, F.J., Santana, D.G.D. and Araújo, L.B.D. 2018. Why analyze germination experiments using Generalized Linear Models. Journal of Seed Science, 40: 281-287. http://dx.doi.org/10.1590/2317-1545v40n3185259. [
DOI:10.1590/2317-1545v40n3185259]
5. Dey, P. and Pandit, P. 2020. Relevance of data transformation techniques in weed science. Journal of Research in Weed Science, 3(1): 81-89.
https://doi.org/10.26655/JRWEEDSCI.2020.1.8 [
DOI:10.26655/JRWEEDSCI.2020.1.8.]
6. Dobson, A.J. and Barnett, A.G. 2018. An introduction to generalized linear models. Chapman and Hall/CRC.
7. Greenland, S., Senn, S.J., Rothman, K.J., Carlin, J.B., Poole, C., Goodman, S.N. and Altman, D.G. 2016. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European Journal of Epidemiology, 31: 337-350.
https://doi.org/10.1007/s10654-016-0149-3 [
DOI:10.1007/s10654-016-0149-3.] [
PMID] [
PMCID]
8. Jaeger, T.F. 2008. Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4): 434-446.
https://doi.org/10.1016/j.jml.2007.11.007 [
DOI:10.1016/j.jml.2007.11.007.] [
PMID] [
PMCID]
9. Johnston, G. 1993. SAS software to fit the generalized linear model. In SUGI Proceedings (pp. 1-8). SAS Institute Inc., Cary, NC.
10. Moder, K. 2007. How to keep the type I error rate in ANOVA if variances are heteroscedastic. Austrian Journal of Statistics, 36(3): 179-188.
https://doi.org/10.17713/ajs.v36i3.329 [
DOI:10.17713/ajs.v36i3.329.]
11. Moder, K. 2010. Alternatives to F-test in one-way ANOVA in case of heterogeneity of variances (a simulation study). Psychological Test and Assessment Modeling, 52(4): 343.
12. Osborne, J. 2010. Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research, and Evaluation, 15(1): 12. [
DOI:10.7275/qbpc-gk17.]
13. Piepho, H.P. 2003. The folded exponential transformation for proportions. Journal of the Royal Statistical Society: Series D (The Statistician), 52(4): 575-589.
https://doi.org/10.1046/j.0039-0526.2003.00509.x [
DOI:10.1046/j.0039-0526.2003.00509.x.]
14. Ribeiro-Oliveira, J.P. and Ranal, M.A. 2016. Sample size in studies on the germination process. Botany, 94(2): 103-115.
https://doi.org/10.1139/cjb-2015-0161 [
DOI:10.1139/cjb-2015-0161.]
15. Ribeiro-Oliveira, J.P., Santana, D.G.D., Pereira, V.J. and Santos, C.M.D. 2018. Data transformation: an underestimated tool by inappropriate use. Acta Scientiarum. Agronomy, 40. http://dx.doi.org/10.4025/actasciagron.v40i1.35300. [
DOI:10.4025/actasciagron.v40i1.35300]
16. Rizzardi, D.A., Contreras-Soto, R.I., Figueiredo, A.S.T., Andrade, C.A.D.B., Santana, R.G. and Scapim, C.A., 2017. Generalized mixed linear modeling approach to analyze nodulation in common bean inbred lines. Pesquisa Agropecuária Brasileira, 52: 1178-1184. [
DOI:10.1590/s0100-204x2017001200006]
17. Robert, C.P., Casella, G. and Casella, G. 2010. Introducing Monte Carlo methods with R (Vol. 18). New York: Springer. [
DOI:10.1007/978-1-4419-1576-4]
18. Sileshi, G.W., 2012. A critique of current trends in the statistical analysis of seed germination and viability data. Seed Science Research, 22(3): 145-159. [
DOI:10.1017/S0960258512000025]
19. Stroup, W.W. 2013. Generalized linear mixed models. CRC Press, Boca Raton, FL.
20. Stroup, W.W. 2015. Rethinking the analysis of non-normal data in plant and soil science. Agronomy Journal, 107(2): 811-827.
https://doi.org/10.2134/agronj2013.0342 [
DOI:10.2134/agronj2013.0342.]
21. Warton, D.I. and Hui, F.K. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology, 92(1): 3-10.
https://doi.org/10.1890/10-0340.1 [
DOI:10.1890/10-0340.1.] [
PMID]