جلد 9، شماره 2 - ( (پاییز و زمستان) 1401 )                   سال1401، جلد9 شماره 2 صفحات 16-1 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sheibany N, Fallah S, Barani-Beiranvand H, Salehi A. (2023). Evaluating the initial growth of soybean (Glycine max) seedlings in response to different concentrations of copper compounds in the maternal plant. Iranian J. Seed Res.. 9(2), 1-16. doi:10.61186/yujs.9.2.1
URL: http://yujs.yu.ac.ir/jisr/article-1-539-fa.html
شیبانی نفیسه، فلاح سینا، بارانی بیرانوند حسین، صالحی عالیه. بررسی رشد اولیه گیاهچه سویا (Glycine max) در پاسخ به غلظت‌های مختلف ترکیبات مس در گیاه مادری پژوهشهای بذر ایران 1401; 9 (2) :16-1 10.61186/yujs.9.2.1

URL: http://yujs.yu.ac.ir/jisr/article-1-539-fa.html


دانشگاه شهرکرد ، fallah-s@sku.ac.ir
چکیده:   (1901 مشاهده)
چکیده مبسوط
مقدمه: استفاده از فناوری نانو در بسیاری از زمینه‌ها از جمله علوم کشاورزی رو به افزایش است و به موازات آن، رهاسازی این ذرات در محیط زیست نیز اجتناب ناپذیر است که ممکن است اثرات نامطلوبی بر گیاهان داشته باشد؛ بنابراین درک اثرات متقابل بین نانوذرات و گیاهان زراعی به عنوان جز اساسی همه اکوسیستم‌های کشاورزی اهمیت زیادی دارد. در این ارتباط، با کشت سویا در خاک دارای نانوذرات اکسید مس، مطالعه‌ای در مورد اثرات نانوذرات بر پتانسیل جوانه‌زنی و رشد اولیه بذرهای نسل دوم انجام گرفت.
مواد و روش‌ها: به‌منظور ارزیابی اثرات تغذیه گیاه مادری سویا  با ترکیبات مس بر گیاهچه‌های حاصل از آن، دو آزمایش فاکتوریل (در محیط ژرمیناتور و گلدان) در قالب طرح کاملاً تصادفی در دانشکده کشاورزی دانشگاه شهرکرد در سال 1399 اجرا گردید. تیمارهای آزمایشی در گیاه مادری شامل ترکیبات مختلف مس (نانوذرات اکسید مس با اندازه‌های 25، 50 نانومتر و کلرید مس) و پنج غلظت ترکیبات مس (صفر، 50، 100، 200 و 500 میلی‌گرم بر کیلوگرم خاک) بودند که بذر حاصل از این تیمارها در شرایط کنترل شده و گلدان مورد ارزیابی قرار گرفت.
یافته‌ها: افزایش غلظت کلرید مس و نانواکسید مس (25 نانومتر) در گیاهان مادری به ترتیب باعث کاهش درصد جوانه‌زنی (25 و 78 درصد)، طول ریشه‌چه (56 و 82 درصد)، وزن ریشه‌چه (35 و 81 درصد)، طول ساقه‌چه (19 و 71 درصد)، وزن ساقه‌چه (32 و 73 درصد) و شاخص بنیه گیاهچه (49 و 94 درصد) بذرهای تولید شده گردید. ارزیابی گیاهچه‌های حاصل از سویای تغذیه شده با ترکیبات مختلف مس نیز نشان داد که در شرایط تغذیه با کلرید مس و نانواکسید مس در مقایسه با شاهد به ترتیب کاهش معنی‌داری در محتوای کلروفیل a (10 و 74 درصد)، کلروفیل b (38 و 49 درصد)، کاروتنوییدها (136 و 145 درصد)، طول ریشه (27 و 61 درصد)، ارتفاع گیاهچه (31 و 58 درصد)، سطح برگ (44 و 64 درصد) و وزن شاخساره (34 و 64 درصد) مشاهده شد.
نتیجه‌گیری: به‌طور کلی نتیجه‌گیری می‌شود که سمیت ترکیبات مس موجود در ریزوسفر گیاه مادری برای بذرهای تولید شده با میزان غلظت رابطه مستقیم دارد؛ بنابراین در شرایط تغذیه گیاه مادری با نانو اکسید مس اثرات سمیت تشدید می‌شود و بذرهای تولید شده در این شرایط بنیه بذر ضعیفی دارند.

جنبه‌های نوآوری:
1- تغذیه گیاه مادری سویا با نانوذرات اکسید مس رشد گیاهچه بذرهای تولید شده را کاهش می‌دهد.
2- کاهش اندازه نانوذرات اکسید مس اثر سمیت بیشتری بر جوانه‌زنی بذرهای تولید شده دارد.
3- اثرات سمیت نانوکسید مس تا مرحله گیاهچه‌ای تدوام دارد.
متن کامل [PDF 538 kb]   (1104 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی بذر
دریافت: 1400/7/22 | ویرایش نهایی: 1402/12/2 | پذیرش: 1401/1/23 | انتشار الکترونیک: 1402/3/24

فهرست منابع
1. Adams, J., Wright, M., Wagner, H., Valiente, J., Britt, D. and Anderson, A. 2017. Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiology and Biochemistry, 110: 108-117. [DOI:10.1016/j.plaphy.2016.08.005] [PMID]
2. Adhikari, T., Kundu, S., Biswas, A.K., Tarafdar, J.C. and Rao, A. S. 2012. Effect of copper oxide nano particle on seed germination of selected crops. Journal of Agricultural Science and Technology, 2: 815-834.
3. Chandra, S., Kumar, A. and Tomar, P.K. 2014. Synthesis and characterization of copper nanoparticles by reducing agent. Journal of Saudi Chemical Society, 18(2): 149-153. [DOI:10.1016/j.jscs.2011.06.009]
4. Dimkpa, C., Mclean, J.E., Latta, D.E., Manangon, E., Britt, D.W., Johnson, W.P., Boyanov, M.I. and Anderson, A.J. 2012. CuO and ZnO nanoparticles: Phytotoxity, metal speciation and induction of oxidative stress in sand- grown wheat. Journal of Nanoparticle Research, 14: 1-15. [DOI:10.1007/s11051-012-1125-9]
5. Du. W., Yang. J., Peng. Q., Liang. X. and Mao. H. 2019. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere, 3: 155- 168. [DOI:10.1016/j.chemosphere.2019.03.168] [PMID]
6. El-Tayeb, M. A., El-Enany, A. E. and Ahmed, N. L. 2006. Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regulation, 50: 191-199. [DOI:10.1007/s10725-006-9118-2]
7. Hong, J., Rico, C.M., Zhao, L., Adeleye, A.S., Keller, A.A., Peralta-Videa, J.R. and Gardea-Torresdey, J. L. 2015. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environmental Science: Processes and Impacts, 17(1): 177-185. [DOI:10.1039/C4EM00551A] [PMID] [PMCID]
8. Ikic, I., Maric, M., Tomasovic, S., Gunjaca, J., Atovic, Z. S. and Arcevic, H. S. 2012. The effect of germination temperature on seed dormancy in creation- grown winter wheats. Euphytica, 188: 25-34. [DOI:10.1007/s10681-012-0735-8]
9. Irna, C., Jaswir, I., Othman, R. and Jimat, D.N. 2018. Comparison between high-pressure processing and chemical extraction: astaxanthin yield from six species of shrimp carapace. Journal of Dietary Supplements, 15(6): 805-813. [DOI:10.1080/19390211.2017.1387885] [PMID]
10. Kalsa, K.K., Abebie, B. 2012. Influence of seed priming on seed germination and vigor traits of Vicia villosa ssp. dasycarpa (Ten.). African Journal of Agricultural Research, 7(21): 3202-3208. [DOI:10.5897/AJAR11.1489]
11. Kim, S., Lee, S. and Lee, I. 2012. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water, Air, and Soil Pollution, 223: 2799-2806. [DOI:10.1007/s11270-011-1067-3]
12. Li, M. Y., Dong, W. S., Liu, C. L., Liu, Z. and Lin, F. Q. 2008. Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires. Journal of Crystal Growth, 310: 4628-4634. [DOI:10.1016/j.jcrysgro.2008.08.032]
13. Lichtenthaler, H.K. and Buschman, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. In: Wrolstad R.E. (ed.). Current Protocols in Food Analytical Chemistry Jhon Wiley and Sons, Inc. New York, 3: 31-34.
14. Liu, R.Q. and Lal, R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514: 131-139. [DOI:10.1016/j.scitotenv.2015.01.104] [PMID]
15. Lotfifar, A., Akbari, G., Shirani-Rad, A., Sadat Noori, S.A., Mottaghi, S. and Nik-Niaei, A.B. 2007. Effect of 1000-seed weight on seed germinability and emergency in spring rapeseed cultivars (Brassica napus L.). Agricultural Research, 7(3): 199-213. [In Persian with English Summary].
16. Nair, P. M.G. and Chung, I.M. 2015. Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure. Journal of Plant Growth Regulation, 34: 350-361. [DOI:10.1007/s00344-014-9468-3]
17. Nair, P.M.G. and Chung, I.M. 2014. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biological Trace Element Research, 162: 342-352. [DOI:10.1007/s12011-014-0106-5] [PMID]
18. Nair, P.M.G., Kim, S.H. and Chung, I.M. 2014. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiologiae Plantarum. 36: 2947-2958. [DOI:10.1007/s11738-014-1667-9]
19. Parsa, M., Saeedi Garaghani, H.R. and Hashemi, A.A. 2015. Investigation of the effects of different concentrations of lead and copper on seed germination and seedling growth (Agropyron trichophrum). Iranian Natural Ecosystems, 6: 79-88. [In Persian with English Summary].
20. Rajput, V., Sushkova, S., Minkina, T. and Behal, A. 2019. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environmental Geochemistry and Health. [DOI:10.1007/s10653-019-00317-3] [PMID]
21. Rajput, V.D., Minkina, T.M., Behal, A., Sushkova, S.N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V.S., Purvis, W.O., Ghazaryan, K.A. and Movsesyan, H. S. 2018. Effects of zinc oxide nanoparticles on soil, plants, animals and soil organisms. A review. Environmental Nanotechnology Monitoring and Management, 9: 76-84. [DOI:10.1016/j.enmm.2017.12.006]
22. Ronaghi, A., Chakerolhosseini, M.R. and Karimian, N. 2002. Growth and chemical composition of corn as affected by phosphorus and iron. Journal of Science and Technology of Agriculture and Natural Resources, 6(2): 53-66. [In Persian with English Summary].
23. Sharma, S., Uttam, R., Sarika Bharti, A. and Uttam, K.N. 2019. Interaction of zinc oxide and copper oxide nanoparticles with chlorophyll: A fluorescence quenching study. Analytical Letters, 52: 1539-1557. [DOI:10.1080/00032719.2018.1556277]
24. Shaw, A. K., Ghosh, S., Kalaji, H. M., Bosa, K. and Brestic, M. 2014. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley. Environmental and Experimental Botany, 102: 37-47. [DOI:10.1016/j.envexpbot.2014.02.016]
25. Shaw, A.K. and Hossain, Z. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93: 906-915. [DOI:10.1016/j.chemosphere.2013.05.044] [PMID]
26. Sobhani, A.R. and Hamidi, H. 2013. The effect of different amounts of potassium on yield and growth indices of potatoes in Mashhad climate. Journal of Crop Ecophysiolog, 7: 341-356. [In Persian with English Summary].
27. Trujillo-Reyes, J., Majumdar, S., Botez, C.E., Peralta-Videa, J.R., and Gardea-Torresdey, J.L. 2014. Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? Journal of Hazardous Materials, 267(1): 255-263. [DOI:10.1016/j.jhazmat.2013.11.067] [PMID]
28. Yousefi, A. 2020. Investigation of transfer and effects of metal oxide nanoparticles (zinc oxide and copper oxide) in soybean. Ph.D. dissertation, Faculty of Agriculture, Shahrekord University, Iran. [In Persian with English Summary].
29. Yousefzaei, F., Pourakbar, L. and Farhadi, Kh. 2015. Investigation of the effect of copper nanoparticles and copper chloride solution on germination and some morphological and physiological factors of basil (Ocimum basilicum L.). Plant Research, 1: 221-231. [In Persian with English Summary].
30. Zhang, H., Zhou, Y., Zhang, M., Shen, T., Li, Y. and Zhu, D. 2003. Photoinduced interaction between fluorescein ester derivatives and CdS colloid. Journal of Colloid and Interface Science, 264: 290-29. [DOI:10.1016/S0021-9797(03)00372-2] [PMID]
31. Zuverza-Mena N. Armendariz R. Peralta-Videa J.R. and Gardea-Torresdey J.L. 2016. Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Frontiers in Plant Science, 7: 90. [DOI:10.3389/fpls.2016.00090] [PMID] [PMCID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهشهای بذر ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.