جلد 6، شماره 2 - ( (پاییز و زمستان) 1398 )                   سال1398، جلد6 شماره 2 صفحات 31-43 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maleki K, Soltani E, Alahdadi I, Ghorbani Javid M. Evaluation of Primary Conditional Dormancy in Seeds of Oilseed Rape (Brassica napus) Produced in Golestan and Mazandaran Provinces. Iranian J. Seed Res.. 2020; 6 (2) :31-43
URL: http://yujs.yu.ac.ir/jisr/article-1-405-fa.html
ملکی کیوان، سلطانی الیاس، اله دادی ایرج، قربانی جاوید مجید. ارزیابی خفتگی شرطی اولیه بذر ارقام کلزای (Brassica napus) تولید شده در استان‌های گلستان و مازندران. پژوهشهای بذر ایران. 1398; 6 (2) :31-43

URL: http://yujs.yu.ac.ir/jisr/article-1-405-fa.html


دانشگاه تهران ، elias.soltani@ut.ac.ir
چکیده:   (1686 مشاهده)
DOR: 98.1000/2383-1251.1398. 6.31.12.2.1575.1606

چکیده مبسوط
 مقدمه: خفتگی شرطی تحت عنوان حالتی پویا بین شرایط خفتگی و عدم خفتگی درنظر گرفته می‌شود. بذرهای دارای خفتگی شرطی بطور عمده در دامنه باریکتری از شرایط دمایی جوانه می‌زنند. این نوع از خفتگی معمولاً در بذرهای دارای خفتگی فیزیولوژیکی نشان داده شده است؛ اما در برخی از بذرهای تازه برداشت شده نیز خفتگی شرطی نشان داده شده است. هدف از این تحقیق بررسی این سوال بود که آیا بذرهای تازه برداشت شده کلزا فاقد خفتگی هستند یا دارای خفتگی شرطی می‌باشند.
 مواد و روش‌ها: این آزمایش به‌صورت فاکتوریل بر پایه طرح بلوک‌های کامل تصادفی در 4 تکرار در آزمایشگاه تکنولوژی بذر پردیس ابوریحان دانشگاه تهران در سال 1397 انجام شد. در این آزمایش ابتدا بذرهای کلزا از 20 موقعیت جغرافیایی مختلف در دو استان گلستان و مازندران جمع‌آوری شدند. سپس اقدام به آزمون جوانه‌زنی در دماهای 5، 15، 20، 30 و 35 درجه سلسیوس شد و درصد و سرعت جوانه‌زنی بذرها ثبت شد. به منظور رفع خفتگی بذر کلزا از دو تیمار مختلف اسید جیبرلیک و پس‌رسی استفاده شد. به منظور اعمال تیمار پس‌رسی، بذرها درون پاکت کاغذی در محیطی خشک و تاریک به مدت 6 ماه انبار شده و سپس مورد آزمون قرار گرفتند. جهت اعمال تیمار اسید جیبرلیک نیز، محلول 100 میلی‌گرم در لیتر اسید جیبرلیک تهیه و به پتری‌ها اضافه شد و سپس درصد و سرعت جوانه‌زنی ثبت گردید.
 یافته‌ها: نتایج نشان داد که بذرهای تازه برداشت شده کلزا دارای خفتگی شرطی اولیه بودند و در دامنه باریکی از شرایط دمایی جوانه‌زنی داشتند. همچنین، دماهای کاردینال برای بذرهای تازه برداشت شده به‌ترتیب 45/4 و 8/27 درجه سلسیوس برای دماهای پایه و سقف بود. پس از اعمال تیمارهای اسید جیبرلیک و پس‌رسی بذرها در دامنه گسترده‌تری از دما جوانه‌زنی کردند و دماهای پایه و سقف به‌ترتیب به 74/1 و حدود 40 درجه سلسیوس رسید. همچنین، درصد جوانه‌زنی بذرهایی که توسط اسید جیبرلیک و پس‌رسی تیمار شده بودند در دماهای بالا و پایین افزایش یافت و این افزایش در درصد جوانه‌زنی در دماهای بالا بیشتر از دماهای پایین بود. همچنین تأثیر تیمار اسید جیبرلیک در رفع خفتگی بیشتر از تیمار پس‌رسی بود و تیمار پس‌رسی تأثیری حدواسط بین جیبرلیک و بذرهای تازه برداشت شده داشت.
 نتیجه‌گیری: بر اساس نتایج این آزمایش اعمال تیمارهای رفع خفتگی جیبرلیک اسید و پس‌رسی موجب رفع خفتگی شرطی اولیه کلزای تازه برداشت شده و افزایش دامنه دمایی جوانه‌زنی این بذور در دماهای بالا و پایین شد. در این بین تیمار اسید جیبرلیک (غلظت 100 میلی‌گرم در لیتر) بیشترین تأثیر را بر رفع خفتگی و افزایش گستره دمایی داشت. در بین ارقام این تغییرات در ظرفیت جوانه‌زنی در دو رقم هایولا 50 و تراپر بیشتر بوده و رقم هایولا 401 کمترین تغییرات را داشت.

جنبه‌های نوآوری:
1- خفتگی شرطی ارقام کلزا تحت شرایط مختلف محیطی بررسی گردید.
2- اعمال تیمارهای اسید جیبرلیک و پس‌رسی موجب رفع خفتگی شرطی اولیه در ارقام کلزا گردید.
متن کامل [PDF 577 kb]   (155 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اکولوژی بذر
دریافت: 1397/12/6 | پذیرش: 1398/3/12

فهرست منابع
1. Baskin, C.C. and Baskin, J.M. 1998. Ecology, biogeography, and evolution of dormancy and germination-introduction. Seeds, 1-3. Elsevier/Academic Press, San Diego, CA, USA.
2. Baskin, J.M. and Baskin, C.C. 1985. The annual dormancy cycle in buried weed seeds: a continuum. BioScience, 35(8): 492-498. [DOI:10.2307/1309817]
3. Baskin, J.M. and Baskin, C.C. 2004. A classification system for seed dormancy. Seed Science Research. 14(1): 1-16. [DOI:10.1079/SSR2003150]
4. Baskin, C.C. and Baskin, J.M. 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination - Second edition. Elsevier/Academic Press, San Diego.
5. Batlla, D. and Arnold, R.L.B. 2005. Changes in the light sensitivity of buried Polygonum aviculare seeds in relation to cold-induced dormancy loss: development of a predictive model. New Phytologist, 165(2): 445-452. [DOI:10.1111/j.1469-8137.2004.01262.x] [PMID]
6. Bernareggi, G., Carbognani, M., Mondoni, A. and Petraglia, A. 2016. Seed dormancy and germination changes of snowbed species under climate warming: the role of pre-and post-dispersal temperatures. Annals of Botany, 118(3): 529-539. [DOI:10.1093/aob/mcw125] [PMID] [PMCID]
7. Bewley, J.D., Bradford, K.J., Hilhorst, H.W. and Nonogaki, H. 2013. Environmental regulation of dormancy and germination. In Seeds (pp. 299-339). Springer, New York, NY. DOI: 10.1007/978-1-4614-4693-4_6 [DOI:10.1007/978-1-4614-4693-4_6]
8. Cao, D., Baskin, C.C., Baskin, J.M., Yang, F. and Huang, Z. 2013. Dormancy cycling and persistence of seeds in soil of a cold desert halophyte shrub. Annals of Botany, 113(1): 171-179. [DOI:10.1093/aob/mct256] [PMID] [PMCID]
9. Copete, M.A., Herranz, J.M. and Ferrandis, P. 2005. Seed dormancy and germination in threatened Iberian Coincya (Brassicaceae) taxa. Ecoscience, 12(2): 257-266. [DOI:10.2980/i1195-6860-12-2-257.1]
10. Duddu, H.S. and Shirtliffe, S.J. 2014. Variation of seed dormancy and germination ecology of cowcockle (Vaccaria hispanica). Weed Science, 62(3): 483-492. [DOI:10.1614/WS-D-13-00125.1]
11. Del Monte, J. P., & Tarquis, A. M. (1997). The role of temperature in the seed germination of two species of the Solanum nigrum complex. Journal of Experimental Botany, 48(12), 2087-2093. [DOI:10.1093/jxb/48.12.2087]
12. Finch‐Savage, W.E. and Leubner‐Metzger, G. 2006. Seed dormancy and the control of germination. New Phytologist, 171(3): 501-523. [DOI:10.1111/j.1469-8137.2006.01787.x] [PMID]
13. Gruber, S., Pekrun, C. and Claupein, W. 2004. Seed persistence of oilseed rape (Brassica napus): variation in transgenic and conventionally bred cultivars. The Journal of Agricultural Science, 142(1): 29-40. [DOI:10.1017/S0021859604003892]
14. Haile, T. A. and Shirtliffe, S.J. 2014. Effect of harvest timing on dormancy induction in canola seeds. Weed Science, 62(3): 548-554. [DOI:10.1614/WS-D-13-00178.1]
15. Huang, S., Gruber, S., Stockmann, F. and Claupein, W. 2016. Dynamics of dormancy during seed development of oilseed rape (Brassica napus L.). Seed Science Research, 26(3): 245-253. [DOI:10.1017/S0960258516000118]
16. Jones, S. K., Ellis, R. H., & Gosling, P. G. (1997). Loss and induction of conditional dormancy in seeds of Sitka spruce maintained moist at different temperatures. Seed Science Research, 7(4), 351-358. [DOI:10.1017/S0960258500003755]
17. Mennan, H. and Zandstra, B.H. 2006. The effects of depth and duration of seed burial on viability, dormancy, germination, and emergence of ivyleaf speedwell (Veronica hederifolia). Weed Technology, 20(2): 438-444. [DOI:10.1614/WT-05-090R.1]
18. Piper, E.L. Boote, K.J. Jones, J.W. and Grimm, S.S. 1996. Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36(6): 1606-1614. doi:10.2135/cropsci1996.0011183X003600060033x [DOI:10.2135/cropsci1996.0011183X003600060033x]
19. Ritchie, J.T. and Nesmith, D.S. 1991. Temperature and crop development. Modeling Plant and Soil Systems, (Agronomy Monograph), 31: 5-29. [DOI:10.2134/agronmonogr31.c2]
20. Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M. and Sarparast, R. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 138(1-4): 156-167. [DOI:10.1016/j.agrformet.2006.04.004]
21. Soltani, E., Baskin, C.C. and Baskin, J.M. 2017. A graphical method for identifying the six types of non‐deep physiological dormancy in seeds. Plant Biology, 19(5): 673-682. [DOI:10.1111/plb.12590] [PMID]
22. Soltani, E., Baskin, J. M. and Baskin, C.C. 2019. A review of the relationship between primary and secondary dormancy, with reference to the volunteer crop weed oilseed rape (Brassica napus). Weed Research, 59(1): 5-14. [DOI:10.1111/wre.12342]
23. Soltani, E., Gruber, S., Oveisi, M., Salehi, N., Alahdadi, I. and Javid, M.G. 2017. Water stress, temperature regimes and light control induction, and loss of secondary dormancy in Brassica napus L. seeds. Seed Science Research, 27(3): 217-230. [DOI:10.1017/S0960258517000186]
24. Steadman, K.J. and Pritchard, H.W. 2004. Germination of Aesculus hippocastanum seeds following cold‐induced dormancy loss can be described in relation to a temperature‐dependent reduction in base temperature (Tb) and thermal time. New Phytologist, 161(2): 415-425. [DOI:10.1046/j.1469-8137.2003.00940.x]
25. Taab, A. and Andersson, L. 2009. Seed dormancy dynamics and germination characteristics of Solanum nigrum. Weed Research, 49(5): 490-498. [DOI:10.1111/j.1365-3180.2009.00724.x]
26. Vegis, A. 1964. Dormancy in higher plants. Annual Review of Plant Physiology, 15(1): 185-224. [DOI:10.1146/annurev.pp.15.060164.001153]
27. Vleeshouwers, L.M., Bouwmeester, H.J. and Karssen, C.M. 1995. Redefining seed dormancy: an attempt to integrate physiology and ecology. Journal of Ecology, 1031-1037. DOI: 10.2307/2261184. [DOI:10.2307/2261184]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به مجله پژوهشهای بذر ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.