Volume 10, Issue 2 ((Spring and Summer) 2021)                   pps 2021, 10(2): 128-138 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

JAVAR S. 12. Basic nutritional requirements of fungi for mass production under liquid fermentation conditions. pps. 2021; 10 (2) :128-138
URL: http://yujs.yu.ac.ir/pps/article-1-339-en.html
Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran , sajavar@gmail.com
Abstract:   (669 Views)
Javar S (2021) Basic nutritional requirements of fungi for mass production under liquid fermentation conditions. Plant Pathology Science 10(2):128-138.  
   Doi: 10.2982/PPS.10.2.128.
Fungi lack chlorophyll and are not able to photosynthesize and obtain the required energy from the decomposition of organic matter in the environment. In general, for the industrial production of biological agents, the choice of cheap and accessible food sources is very important. In this paper, the main nutritional requirements of fungi in liquid fermentation are discussed, which include carbon sources, nitrogen sources, minerals and oxygen in aerobic fungi. Carbon sources in the liquid fermentation industry are carbohydrates, animal fats, vegetable oils, hydrocarbons and alcohols, of which the major carbon sources are carbohydrates. Eight to fourteen percent of the dry weight of fungi is nitrogen, and a large number of mineral and organic compounds can be used to meet the fungus's need for nitrogen. Fungi, like other microorganisms, need certain minerals for their growth and cellular metabolism. Most commercially produced and consumed biological fungi are aerobic microorganisms and in some cases, facultative anaerobes. In the mass production of filamentous fungi, the presence of sufficient dissolved oxygen is an important and limiting factor for proper growth and sporulation.

Full-Text [PDF 400 kb]   (264 Downloads)    
Type of Study: EXTENTIONAL | Subject: Special

1. Ahmadzadeh M, Saberi Riseh R, Asgarinia M (2015) Fermentation, Formulation and Application Technology of Plant Probiotics in Agriculture. University of Tehran Press, Iran, 206p. (In Persian).
2. Allikian K, Edgar R, Syed R, Zhang S (2019) Fundamentals of Fermentation Media. Pp.41-84. In: A Berenjian (ed.). Essentials in Fermentation Technology, Springer, Cham. [DOI:10.1007/978-3-030-16230-6_2]
3. Asaff A, Cerda-Garcı'a-Rojas CM, Viniegra-Gonza'lez G, de la Torre M (2006) Carbon distribution and redirection of metabolism in Paecilomyces fumosoroseus during solid-state and liquid fermentations. Process Biochemistry 41:1303-1310. [DOI:10.1016/j.procbio.2006.01.001]
4. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University Science B 9:165-191. [DOI:10.1631/jzus.B0710640] [PMID] [PMCID]
5. Cliquet S, Jackson M (2005) Impact of carbon and nitrogen nutrition on the quality, yield and composition of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Journal of Industrial Microbiology and Biotechnology 32:204-210. [DOI:10.1007/s10295-005-0232-3] [PMID]
6. De la Torre M, Cardenas-Cota HM (1996) Production of Paecilomyces fumosoroseus conidia in submerged culture. Entomophaga 41:443-453. [DOI:10.1007/BF02765796]
7. Goettel MS, Roberts DW (1992) Mass Production, Formulation and Field Application of Entomopathogenic Fungi. PP.230-238. In: CJ Lomer, C Pror (eds.). Biological Control of Locusts and Grasshoppers. CABI, Wallingford.
8. Greasham RL (1993) Media for Microbial Fermentations. PP.127-139. In: HJ Rehm, G Reed (eds.). Biotechnology, Second Edition. Verlagsgesellschaft, Weinheim (Federal Republic of Germany). [DOI:10.1002/9783527620845.ch7]
9. Halford NG, Curtis TY, Muttucumaru N, Postles J, Mottram DS (2011) Sugars in crop plants. Annals of Applied Biology 158:1-25. [DOI:10.1111/j.1744-7348.2010.00443.x]
10. Hu WS (2017) Oxygen Transfer in Bioreactors. PP.241-264. In: WS Hu (ed.). Engineering Principles in Biotechnology. John Wiley & Sons. [DOI:10.1002/9781119159056.ch8]
11. Hutner SH (1972) Inorganic nutrition. Annual Review of Microbiology 26:313-346. [DOI:10.1146/annurev.mi.26.100172.001525] [PMID]
12. Issaly N, Chauveau H, Aglevor F, Fargues J, Durand A (2005) Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochemistry 40:1425-1431. [DOI:10.1016/j.procbio.2004.06.029]
13. Jackson MA (2012) Dissolved oxygen levels affect dimorphic growth by the entomopathogenic fungus Isaria fumosorosea. Biocontrol Science and Technology 22:67-79. [DOI:10.1080/09583157.2011.642339]
14. Jackson MA, Jaronski ST (2009) Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their use as a biocontrol agent for soil-inhabiting insects. Mycological Research 113:842-850. [DOI:10.1016/j.mycres.2009.03.004] [PMID]
15. Jenkins NE, Prior C (1993) Growth and formation of true conidia by Metarhizium flavoviride in a simple liquid medium. Mycological Research 97:1489-1494. [DOI:10.1016/S0953-7562(09)80223-2]
16. Kim JS, Je YH, Woo EO, Park JS (2011) Persistence of Isaria fumosorosea (Hypocreales: Cordycipitaceae) SFP-198 Conidia in Corn Oil-Based Suspension. Mycopathologia 171:67-75. [DOI:10.1007/s11046-010-9336-z] [PMID]
17. Leland JE, Mullins DE, Vaughan LJ, Warren HL (2005a) Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum, Part 1: comparison of cell wall characteristics and drying stability among three spore types. Biocontrol Science and Technology 15: 379-392. [DOI:10.1080/09583150400016928]
18. Leland JE, Mullins DE, Vaughan LJ, Warren HL (2005b) Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum Part 2: effects of media osmolality on cell wall characteristics, carbohydrate concentrations, drying stability, and pathogenicity. Biocontrol Science and Technology 15:393-409. [DOI:10.1080/09583150400016910]
19. Lopes MA, Gomes DS, Bello Koblitz MG, Pirovani CP, de Mattos Cascardo JC, Goes-Neto A, Micheli F (2008). Use of response surface methodology to examine chitinase regulation in the basidiomycete Moniliophtora perniciosa. Mycological Research 112:399-406. [DOI:10.1016/j.mycres.2007.10.017] [PMID]
20. Lopusiewicz L, Mazurkiewicz-Zapałowicz K, Tkaczuk C, Bartkowiak A (2020) The influence of cobalt ions on growth and enzymatic activity of entomopathogenic fungi used in biological plant protection. Journal of Plant Protection Research 60:58-67.
21. Mohammadi Nasr M, Nahvi I, Keyhanfar M, Mirbagheri M (2017) The effect of carbon and nitrogen sources on the fatty acids profile of Mortierella vinacea. Biological Journal of Microorganism 5:1-8.
22. Nakayama, K. (1972) Micro-organisms in Amino Acid Fermentation. PP.433-438. In: G Temi (ed.), Fermentation Technology Today Japan: Society of Fermentation Technology.
23. Nirmal NP, Laxman, RS (2014) Enhanced thermostability of a fungal alkaline protease by different additives. Enzyme Research 2014:1-9. [DOI:10.1155/2014/109303] [PMID] [PMCID]
24. Peters D (2006) Carbohydrates for fermentation. Biotechnology Journal: Healthcare Nutrition Technology 1:806-814. [DOI:10.1002/biot.200600041] [PMID]
25. Ravensberg WJ (2011) A Rroadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Springer Netherlands, 386P. [DOI:10.1007/978-94-007-0437-4]
26. Safavi SA, Shah FA, Pakdel AK, Rasoulian GR, Bandani AR, Butt TM (2007) Effect of nutrition on growth and virulence of the entomopathogenic fungus Beauveria bassiana. FEMS Microbiology Letters 270:116-123. [DOI:10.1111/j.1574-6968.2007.00666.x] [PMID]
27. Stanbury PF, Whitaker A, Hall SJ (2017a) Media for Industrial Fermentations. PP.213-272. In: PF Stanbury, A Whitaker, SJ Hall (eds.). Principles of Fermentation Technology. Third edition, Elsevier Ltd. [DOI:10.1016/B978-0-08-099953-1.00004-1]
28. Stanbury PF, Whitaker A, Hall SJ (2017b) Aeration and Agitation. PP.537-618. In: PF Stanbury, A Whitaker, SJ Hall (eds.). Principles of Fermentation Technology. Third edition, Elsevier Ltd. [DOI:10.1016/B978-0-08-099953-1.00009-0]
29. Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparative study. International Journal of Science and Nature 3:480-486.
30. Sun MH, Liu XZ (2006) Carbon requirements of some nematophagous, entomopathogenic and mycoparasitic Hyphomycetes as fungal biocontrol agents. Mycopathologia 161:295-305. [DOI:10.1007/s11046-006-0249-9] [PMID]
31. Thomas KC, Khachatourians GG, Ingledew WM (1987) Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Canadian Journal of Microbiology 33:12-20. [DOI:10.1139/m87-003]
32. Vega FE, Jackson MA, Mercadier G, Poprawski TJ (2003) The impact of nutrition on spore yields for various fungal entomopathogens in liquid culture. World Journal of Microbiology and Biotechnology 19:363-368. [DOI:10.1023/A:1023924304456]
33. Yazid NA, Barrena R, Komilis D, Sánchez A (2017) Solid-state fermentation as a novel paradigm for organic waste valorization: A review. Sustainability 9:224. [DOI:10.3390/su9020224]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb