Volume 6, Issue 2 (9-2017)                   Plant Pathol. Sci. 2017, 6(2): 43-54 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirtalebi M, Mostowfizadeh-Ghalamfarsa R. (2017). Integrated Management of Gray Mold Disease. Plant Pathol. Sci.. 6(2), 43-54. doi:10.29252/pps.6.2.43
URL: http://yujs.yu.ac.ir/pps/article-1-190-en.html
Department of Plant Protection, Shiraz University, Shiraz, Iran , rmostofi@shirazu.ac.ir
Abstract:   (8586 Views)

Mirtalebi M. & Mostowfizade-Ghalamfarsa R. Integrated management of gray mold disease. Plant Pathology Science 6(2):43-54.
 
Gray mold caused by Botrytis cinerea, is one of the most important postharvest diseases on fresh fruits and vegetables worldwide. The disease may start in the field and remain as a latent infection and then develop after harvest, during transportation, packaging, storage and marketing. Nowadays, application of fungicides is the main strategy to control the gray mold disease in conventional agriculture. The presence of fungicide residues in edible fruits and vegetables is a concern for consumers because pesticides are known to have potential harmful effects. Therefore, the search on finding the safe and effective disease control strategies has been accelerated. Integrated management of the disease by using some methods like optimal method of irrigation and fertilization, biological control, use of bioagents, disinfection of fresh fruits and vegetables after harvesting, storing and shipping in a cool and dry condition with low humidity and suitable ventilation are suggested.

Full-Text [PDF 1159 kb]   (3504 Downloads)    
Type of Study: Extentional | Subject: General
Received: 2016/06/30 | Accepted: 2017/02/21

References
1. Chervin C., Lavigne D. & Westercamp P. 2009. Reduction of gray mold development in table grapes by preharvest sprays with ethanol and calcium chloride. Postharvest Biology and Technology 54:115–117. [DOI:10.1016/j.postharvbio.2009.06.005]
2. Chu E. H., Shin E. J., Park H. J. & Jeong R. D. 2015. Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses. Radiation Physics and Chemistry 115:22–29. [DOI:10.1016/j.radphyschem.2015.05.042]
3. Crisosto C. H., Garner D. & Crisosto G. 2002. Carbon dioxide-enriched atmospheres during cold storage limit losses from Botrytis but accelerate rachis browning of 'Redglobe' table grapes. Postharvest Biology and Technology 26:181–189. [DOI:10.1016/S0925-5214(02)00013-3]
4. Elad Y., Vivier M. & Fillinger S. 2015. Botrytis: the Good, the Bad and the Ugly. Pp. 1–15. In: Fillinger S., Elad Y. & Vivier M. (eds.). Botrytis-the Fungus, the Pathogen and Its Management in Agricultural Systems. Springer, Heidelberg, Germany.
5. Feliziani E. & Romanazzi G. 2013. Preharvest application of synthetic fungicides and alternative treatments to control postharvest decay of fruit. Stewart Postharvest Review 3:1-6.
6. Gastavsson J., Cederberg C. & Sonesson U. 2011. Global Food Losses and Food Waste. Food and Agriculture Organization (FAO) of the United Nations, Rome. 37p.
7. Jin P., Zheng C., Huang Y. P., Wang X. L., Luo Z. S. & Zheng Y. H. 2016. Hot air treatment activities defense resposes and induces resistance against Botrytis cinerea in strawberry fruit. Journal of Integrative Agriculture 15: 2658–2665. [DOI:10.1016/S2095-3119(16)61387-4]
8. Karabulut O. A., Smilanick J. L., Mlikota Gabler F., Mansour M. & Droby S. 2003. Near- harvest applications of Metschnikowia fructicola, ethanol, and sodium bicarbonate to control postharvest diseases of grape in central California. Plant Disease 87:1384–1389. [DOI:10.1094/PDIS.2003.87.11.1384]
9. Karaca H., Walse S. S. & Smilanick J. L. 2012. Effect of continuous 0. 3 mL/L gaseous ozone exposure on fungicide residues on table grape berries. Postharvest Biology and Technology 64:154–159. [DOI:10.1016/j.postharvbio.2011.07.004]
10. Khamis Y. & Sergio R. R. 2014. Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of 'Italia' table grapes. Postharvest Biology and Technology 87:95–102. [DOI:10.1016/j.postharvbio.2013.08.011]
11. Khazaeli P., Zamanizadeh H., Moradi B. & Bayat H. 2010. Morphological and molecular identification of Botrytis cinerea causal agent of gray mold in rose greenhouses in central region of Iran. International Journal of Agricultural Science and Research 1:19–24.
12. Mari M., Di Francesco A. & Bertolini P. 2014. Control of fruit postharvest diseases: old issues and innovative approaches. Stewart Postharvest Review 1: 1–4.
13. Mavandadi A., Khajehali J. & Sharifnabi B. 2016. Efficacy of conventional fungicides in controlling tomato grey mold. Journal of Greenhouse Culture Science and Technology 6:181-190. [DOI:10.18869/acadpub.ejgcst.6.4.181]
14. Meng X. H., Qin G. Z. & Tian S. P. 2010. Influences of preharvest spraying Cryptococcus laurentii combined with postharvest chitosan coating on postharvest diseases and quality of table grapes in storage. LWT-Food Science and Technology 43:596–601. [DOI:10.1016/j.lwt.2009.10.007]
15. Michailides T.J. & Elmer P. A. G. 2000. Botrytis gray mold of kiwifruit caused by Botrytis cinerea in the United States and New Zealand. Plant Disease 84:208–223. [DOI:10.1094/PDIS.2000.84.3.208]
16. Mirzaee S., Mohammadi Goltapeh E., Shams-Bakhsh M. & Safaie, N. 2008. Identification of Botrytis spp. on plants grown in Iran. Journal of Phytopathology 156:21–28.
17. Mlikota Gabler F., Smilanick J. L., Ghosoph J. M. & Margosan D. A. 2005. Impact of postharvest hot water or ethanol treatment of table grapes on gray mold incidence, quality, and ethanol content. Plant Disease 89:309–316. [DOI:10.1094/PD-89-0309]
18. Mlikota Gabler F., Smilanick J. L., Mansour M. F. & Karaca H. 2010. Influence of fumigation with high concentrations of ozone gas on postharvest gray mold and fungicide residues on table grapes. Postharvest Biology and Technology 55:85–90. [DOI:10.1016/j.postharvbio.2009.09.004]
19. Mosayyebzadeh A., Mostofi Y., Javan Nikkhah M. & Emam Jome Z. 2009. Evaluation of biochemical changes and gray mold during storage of Shahroodi table grapes under modified atmosphere packaging. Journal of Horticultural Science 22:68–77.
20. Naeimi S. & Zare, R. 2014. Evaluation of indigenous Trichoderma spp. isolates in biological control of Botrytis cinerea, the causal agent of strawberry gray mold disease. Biocontrol in Plant Protection. 1:55–74.
21. Pearson R. C. & Goheen A. C. 1988. Compendium of Grape Diseases. APS Press, MN, USA. 93p.
22. Powelson R. L. 1960. Initiation of strawberry fruit rot caused by Botrytis cinerea. Phytopathology 50:491–494.
23. Qin X., Xiao H., Xue C., Yu Z., Yang R., Cai Z. & Si L. 2015. Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biology and Technology 100:160–167. [DOI:10.1016/j.postharvbio.2014.09.010]
24. Romanazzi G., Karabulut O. A. & Smilanick J. L. 2007. Combination of chitosan and ethanol to control gray mold of table grapes. Postharvest Biology and Technology 45:134–140. [DOI:10.1016/j.postharvbio.2007.01.004]
25. Romanazzi G., Lichter A., Mlikota Gabler F. & Smilanick J. L. 2012. Natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology 63:141–147. [DOI:10.1016/j.postharvbio.2011.06.013]
26. Romanazzi G., Smilanick J. L., Feliziani E. & Droby S. 2016. Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology 113:69–76. [DOI:10.1016/j.postharvbio.2015.11.003]
27. Rosa S. 2006. Postharvest management of fruit and vegetables in the Asia-Pacific region / Asian Productivity Organization. Food and Agricultural Organization (FAO). 312 p. Available online at: http://www.apo-tokyo.org/00e-books/AG-18_PostHarvest/AG-18_PostHarvest.pdf
28. Schmid F., Moser G., Müller H. & Berg G. 2011. Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Applied and Environmental Microbiology 77:2188–2191. [DOI:10.1128/AEM.02187-10]
29. Sholberg P. L., Reynolds A. G. & Gaunce A. P. 1996. Fumigation of table grapes with acetic acid to prevent postharvest decay. Plant Disease 80:1425–1428. [DOI:10.1094/PD-80-1425]
30. Sivakumar D. & Bautista-Ba-os S. 2014. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection 64:27–37. [DOI:10.1016/j.cropro.2014.05.012]
31. Thomidis T., Zioziou E., Koundouras S., Karagiannidis C., Navrozidis, I. & Nikolaou N. 2016. Effects of nitrogen and irrigation on the quality of grapes and the susceptibility to Botrytis bunch rot. Scientia Horticulturae 212:60–68. [DOI:10.1016/j.scienta.2016.09.036]
32. Tripathi P. & Dubey N.K. 2004. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology 32:235–245. [DOI:10.1016/j.postharvbio.2003.11.005]
33. Zangoei E., Etebarian H. R. & Sahebani N. 2013. Biological control of gray mold on apple by combining of some yeast and Bacillus subtilis isolates and induction of defense responses. Biological Control of Pests and Plant Disease 2:141–153.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb