Volume 13, Issue 2 ((Spring and Summer) 2024)                   Plant Pathol. Sci. 2024, 13(2): 77-88 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasani K, Shahryari F. (2024). Application of secondary metabolites of Streptomyces species in plant disease management. Plant Pathol. Sci.. 13(2), 77-88. doi:10.61186/pps.13.2.77
URL: http://yujs.yu.ac.ir/pps/article-1-458-en.html
University of Zanjan , shahryari@znu.ac.ir
Abstract:   (224 Views)
The genus Streptomyces belongs to the actinomycetes, which is an aerobic, gram-positive and multicellular bacterium. The members of this genus are mostly known as soil-dwelling bacteria. However, they are found in various environments such as marine sediments, freshwater ecosystems, symbiotic with insects and sponges, and plant endophytes. In particular, only a few pathogenic species of this genus have been identified that cause disease in plants and humans. Beyond the range of distribution, specific genomic features, unusual mushroom-like growth mode, impressive metabolic capabilities, including the ability to produce diverse antibiotics and other bioactive natural products, have made members of this genus attractive organisms for study. They are also among the most promising microorganisms for improving the overall health of the soil and increasing agricultural productivity. Approximately two-thirds of all known actinomycete antibiotics are produced primarily by members of this genus. The metabolites of this genus have a wide spectrum including cyclic and linear peptides, terpenoids, macrolactams, macrolides, glycosides, polyaromatics and linear polyketides. The discovery of numerous and different compounds shows the high potential of Streptomyces as a source of new and interesting natural products.
 
Full-Text [PDF 681 kb]   (237 Downloads)    
Type of Study: Extentional | Subject: Plants Diseases Management Methods
Received: 2024/09/27 | Accepted: 2025/01/7

References
1. Bai, J.L., Wang, H.H., Zhang, J.M., Wu, Q.P., Mo, S.P., He, Y.L., Weng, S.Q., Yang, X.J. and Li, C.Z (2022). Postharvest quality maintenance of wax apple and guava fruits by use of a fermented broth of an ε-poly-l-lysine-producing Streptomyces strain. PLOS ONE 17(3): p.e0265457. [DOI:10.1371/journal.pone.0265457] [PMID] []
2. Bisset, K.A. and Moore, F.W. (1949). The relationship of certain branched bacterial genera. Microbiology 3(3):387-391. [DOI:10.1099/00221287-3-3-387] [PMID]
3. Carretero-Molina, D., Ortiz-López, F.J., Martín, J., Oves-Costales, D., Díaz, C., de la Cruz, M., Cautain, B., Vicente, F., Genilloud, O. and Reyes, F. (2019). New napyradiomycin analogues from Streptomyces sp. strain CA-271078. Marine Drugs 18(1): 22. [DOI:10.3390/md18010022] [PMID] []
4. Chevrette, M.G., Carlson, C.M., Ortega, H.E., Thomas, C., Ananiev, G.E., Barns, K.J., Book, A.J., Cagnazzo, J., Carlos, C., Flanigan, W. and Grubbs, K.J. (2019). The antimicrobial potential of Streptomyces from insect microbiomes. Nature Communications 10(1): 516. [DOI:10.1038/s41467-019-08438-0] [PMID] []
5. Chouyia, F.E., Ventorino, V. and Pepe, O. (2022). Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: A review. Frontiers in Plant Science 13:1035358. [DOI:10.3389/fpls.2022.1035358] [PMID] []
6. Cowley, M. A., Brown, W. A. and Considine, R. V. (2016). Obesity: The problem and its management. In: Jameson, J. L., De Groot, L. J., de Kretser, D. M., Giudice, L. C., Grossman, A. B., Melmed, S., Potts. Jr J. T, and Weir, G. C. (Eds.), Endocrinology: Adult & Pediatric (7th ed., pp. 468-478). [DOI:10.1016/B978-0-323-18907-1.00026-3]
7. Dimkpa, C.O., Svatoš, A., Dabrowska, P., Schmidt, A., Boland, W. and Kothe, E. (2008). Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19-25. [DOI:10.1016/j.chemosphere.2008.09.079] [PMID]
8. Donald, L., Pipite, A., Subramani, R., Owen, J., Keyzers, R.A. and Taufa, T. (2022). Streptomyces: Still the biggest producer of new natural secondary metabolites, a current perspective. Microbiology Research 13(3):418-465. [DOI:10.3390/microbiolres13030031]
9. Dong H, Guo T, Zhang W, Ying H, Wang P, Wang Y, Chen Y. (2019). Biochemical characterization of a nove azoreductase from Streptomyces sp.: Application in eco-friendly decolorization of azo dye wastewater. International Journal of Biological Macromolecules 1(140):1037-1046. [DOI:10.1016/j.ijbiomac.2019.08.196] [PMID]
10. Dow, L., Gallart, M., Ramarajan, M., Law, S.R. and Thatcher, L.F. (2023). Streptomyces and their specialised metabolites for phytopathogen control-comparative in vitro and in planta metabolic approaches. Frontiers in Plant Science 14:1151912. [DOI:10.3389/fpls.2023.1151912] [PMID] []
11. Drawz, S.M. and Bonomo, R.A. (2010). Three decades of β-lactamase inhibitors. Clinical Microbiology Reviews, 23(1), pp.160-201. [DOI:10.1128/CMR.00037-09] [PMID] []
12. Hamed, R.B., Gomez-Castellanos, J.R., Henry, L., Ducho, C., McDonough, M.A. and Schofield, C.J. (2013). The enzymes of β-lactam biosynthesis. Natural Product Reports, 30(1):21-107. [DOI:10.1039/C2NP20065A] [PMID]
13. Harir, M., Bendif, H., Bellahcene, M., Fortas, Z., Pogni, R. (2018). Streptomyces secondary metabolites. In: Enany, Sh. (Ed.) Basic Biology and Applications of Actinobacteria. First published in London, United Kingdom, by IntechOpen, 99-122. [DOI:10.5772/intechopen.79890]
14. Islan GA, Rodenak-Kladniew B, Noacco N, Duran N, Castro GR. (2022). Prodigiosin: a promising biomolecule with many potential biomedical applications. Bioengineered 13(6):14227-14258. [DOI:10.1080/21655979.2022.2084498] [PMID] []
15. Khushboo-Kumar, P., Dubey, K.K., Usmani, Z., Sharma, M. and Gupta, V.K., (2022). Biotechnological and industrial applications of Streptomyces metabolites. Biofuels, Bioproducts and Biorefining 16(1):244-264. [DOI:10.1002/bbb.2294]
16. Kim, H.J., Bo, A.B., Kim, J.D., Kim, Y.S., Khaitov, B., Ko, Y.K., Cho, K.M., Jang, K.S., Park, K.W. and Choi, J.S., (2020). Herbicidal characteristics and structural identification of the potential active compounds from Streptomyces sp. KRA17-580. Journal of Agricultural and Food Chemistry 68(52):15373-15380. [DOI:10.1021/acs.jafc.0c01974] [PMID]
17. Kim, J.D., Park, M.Y., Jeon, B.J. and Kim, B.S. (2019). Disease control efficacy of 32, 33-didehydroroflamycoin produced by Streptomyces rectiviolaceus strain DY46 against gray mold of tomato fruit. Scientific reports 9(1):13533. [DOI:10.1038/s41598-019-49779-6] [PMID] []
18. Komaki, H., (2023). Recent Progress of Reclassification of the Genus Streptomyces. Microorganisms 11(4):831. [DOI:10.3390/microorganisms11040831] [PMID] []
19. Lacey, H.J. and Rutledge, P.J., (2022). Recently discovered secondary metabolites from Streptomyces species. Molecules, 27(3):887. [DOI:10.3390/molecules27030887] [PMID] []
20. Le, K.D., Yu, N.H., Park, A.R., Park, D.J., Kim, C.J. and Kim, J.C., (2022). Streptomyces sp. AN090126 as a biocontrol agent against bacterial and fungal plant diseases. Microorganisms 10(4):791. [DOI:10.3390/microorganisms10040791] [PMID] []
21. Lyu, A., Liu, H., Che, H., Yang, L., Zhang, J., Wu, M., Chen, W. and Li, G., (2017). Reveromycins A and B from Streptomyces sp. 3-10: antifungal activity against plant pathogenic fungi in vitro and in a strawberry food model system. Frontiers in Microbiology, 8:550. [DOI:10.3389/fmicb.2017.00550]
22. McDonald, B.R. and Currie, C.R. (2017). Lateral gene transfer dynamics in the ancient bacterial genus Streptomyces. MBio, 8(3):10-1128. [DOI:10.1128/mBio.00644-17] [PMID] []
23. Narayana, K.J.P., Kumar, K.G. and Vijayalakshmi, M. (2008). L-asparaginase production by Streptomyces albidoflavus. Indian Journal of Microbiology 48:331-336. [DOI:10.1007/s12088-008-0018-1] [PMID] []
24. Nguyen, H.T.T., Park, A.R., Hwang, I.M. and Kim, J.C. (2021). Identification and delineation of action mechanism of antifungal agents: Reveromycin E and its new derivative isolated from Streptomyces sp. JCK-6141. Postharvest Biology and Technology 182:111700. [DOI:10.1016/j.postharvbio.2021.111700]
25. Pacios-Michelena, S., Aguilar Gonzalez, C.N., Alvarez-Perez, O.B., Rodriguez-Herrera, R., Chávez-González, M., Arredondo Valdes, R., Ascacio Valdes, J.A., Govea Salas, M. and Ilyina, A. (2021). Application of Streptomyces antimicrobial compounds for the control of phytopathogens. Frontiers in Sustainable Food Systems 5: 696518. [DOI:10.3389/fsufs.2021.696518]
26. Palaniyandi, S.A., Yang, S.H., Zhang, L. and Suh, J.W. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology 97:9621-9636. [DOI:10.1007/s00253-013-5206-1] [PMID]
27. Quinn, G.A., Banat, A.M., Abdelhameed, A.M. and Banat, I.M. (2020). Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. Journal of medical microbiology 69(8):1040-1048. [DOI:10.1186/s12967-020-02494-7] [PMID] []
28. Sadeghi, A., Koobaz, P., Azimi, H., Karimi, E. and Akbari, A.R. (2017). Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl 62:805-819. [DOI:10.1007/s10526-017-9838-4]
29. Schlimpert, S. and Elliot, M.A. (2023). The best of both worlds-Streptomyces coelicolor and Streptomyces venezuelae as model species for studying antibiotic production and bacterial multicellular development. Journal of Bacteriology, pp.e00153-23. [DOI:10.1128/jb.00153-23] [PMID] []
30. Ser, H.L., Law, J.W.F., Chaiyakunapruk, N., Jacob, S.A., Palanisamy, U.D., Chan, K.G., Goh, B.H. and Lee, L.H., (2016). Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review. Frontiers in Microbiology, 7:183344. [DOI:10.3389/fmicb.2016.00522]
31. Sousa, J.A.D.J. and Olivares, F.L., (2016). Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chemical and Biological Technologies in Agriculture 3(1):1-12. [DOI:10.1186/s40538-016-0073-5]
32. Suzuki, M.; Komaki, H.; Kaweewan, I.; Dohra, H.; Hemmi, H.; Nakagawa, H.; Yamamura, H.; Hayakawa, M. and Kodani, S. (2021). Isolation and structure determination of new linear azole-containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Applied Microbiology and Biotechnology 105:93-104. [DOI:10.1007/s00253-020-11016-w] [PMID]
33. Waksman, S.A. and Woodruff, H.B. (1940). Bacteriostatic and bactericidal substances produced by a soil Actinomyces. Proceedings of the society for Experimental Biology and Medicine 45(2):609-614. [DOI:10.3181/00379727-45-11768]
34. Waksman, S.A. and Woodruff, H.B. (1942). Selective antibiotic action of various substances of microbial origin. Journal of bacteriology, 44(3):373-384. [DOI:10.1128/jb.44.3.373-384.1942] [PMID] []
35. Watve, M.G., Tickoo, R., Jog, M.M. and Bhole, B.D. (2001). How many antibiotics are produced by the genus Streptomyces? Archives of Microbiology 176:386-390. [DOI:10.1007/s002030100345] [PMID]
36. Wonglom, P., Suwannarach, N., Lumyong, S., Ito, S.I., Matsui, K. and Sunpapao, A., (2019). Streptomyces angustmyceticus NR8-2 as a potential microorganism for the biological control of leaf spots of Brassica rapa subsp. pekinensis caused by Colletotrichum sp. and Curvularia lunata. Biological Control, 138:104046. [DOI:10.1016/j.biocontrol.2019.104046]
37. Zhao, X., Zhou, J., Tian, R. and Liu, Y. (2022). Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Frontiers in Microbiology 13:922450. [DOI:10.3389/fmicb.2022.922450] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb