جلد 13، شماره 1 - ( (پاییز و زمستان) 1402 )                   جلد 13 شماره 1 صفحات 74-65 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirtalebi M, Abshang D. (2024). The role of fungal volatile organic compounds in plant disease management. Plant Pathol. Sci.. 13(1), 65-74. doi:10.61186/pps.13.1.65
URL: http://yujs.yu.ac.ir/pps/article-1-431-fa.html
میرطالبی مریم، آبشنگ دنیا. نقش ترکیبهای آلی فرار قارچها در مدیریت بیماریهای گیاهی دانش بیماری شناسی گیاهی 1402; 13 (1) :74-65 10.61186/pps.13.1.65

URL: http://yujs.yu.ac.ir/pps/article-1-431-fa.html


گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران ، mmirtalebi@shirazu.ac.ir
چکیده:   (510 مشاهده)
آبشنگ، د.، میرطالبی، م. (1402). نقش ترکیب­های آلی فرار قارچ­ها در مدیریت بیماری­های گیاهی. دانش بیماری­شناسی گیاهی، 13 (1)، 74-65.
ترکیب­های آلی فرار، مواد شیمیایی آلی مبتنی بر کربن هستند که از متابولیسم اولیه یا ثانویه مشتق شده‌اند و به صورت گاز از جامدات و مایعات مختلف آزاد می‌شوند. بسیاری از برهمکنش­های بوم­شناختی درون و بین سلسله­ای در بین موجودات زنده از طریق ترکیب­های آلی فرار رخ می­دهد. ترکیب­های آلی فرار قارچ­های بیمارگر، اثر منفی بر رشد گیاهان دارند. آزاد شدن مواد فرار توسط این قارچ­ها در خاک، رشد گیاه را مهار می­کند و منجر به کاهش طول شاخه، سطح ریشه و زیست ­توده گیاه می­شود. علاوه بر تأثیر منفی بر رشد گیاه، این ترکیب­های تولید شده توسط قارچ­های بیمارگر نیز می­توانند به ­عنوان تنظیم کننده رشد، معماری گیاه را تغییر دهند و باعث تحریک رشد گیاه شوند. در نتیجه افزایش رشد گیاهان به دلیل ایجاد زیستگاه بزرگتر برای استقرار سطحی و افزایش بقای آن­ها می­تواند برای بیمارگرها مفید باشد. همچنین این ترکیب­ها در برهمکنش با قارچ­ ریشه­ ها، سنتز زیستی استریگولاکتون­ها و رشد ریشه را افزایش می­دهند و شناسایی قارچ­ریشه را برای ریشه­ ها آسان می­کنند و باعث افزایش استقرار قارچ ­ریشه روی ریشه ­ها می­شوند. اثرات آنتی­بیوتیکی این ترکیب­ها در مهار بسیاری از بیمارگرهای گیاهی دخیل است. برخی از این ترکیب­های فرار قارچی فعالیت بازدارندگی در خاک و برخی خاصیت دورکنندگی حشرات و نماتدکشی دارند.
متن کامل [PDF 1536 kb]   (303 دریافت)    
نوع مطالعه: ترویجی | موضوع مقاله: قارچ
دریافت: 1402/11/11 | پذیرش: 1403/3/13

فهرست منابع
1. Abdulsalam, O., Wagner, K., Wirth, S., Kunert, M., David, A., Kallenbach, M., & Krause, K. (2021). Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies). Mycorrhiza, 31, 173-188. [DOI:10.1007/s00572-020-01005-2] [PMID] []
2. Ditengou, F. A., Müller, A., Rosenkranz, M., Felten, J., Lasok, H., Van Doorn, M. M., ... & Polle, A. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature communications, 6(1), 6279. [DOI:10.1038/ncomms7279] [PMID] []
3. Duc, N. H., Vo, H. T., van Doan, C., Hamow, K. A., Le, K. H., & Posta, K. (2022). Volatile organic compounds shape belowground plant-fungi interactions. Frontiers in Plant Science, 13, 1046685. [DOI:10.3389/fpls.2022.1046685] [PMID] []
4. Effah, E., Holopainen, J. K., & McCormick, A. C. (2019). Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics, 38, 58-63. [DOI:10.1016/j.ppees.2019.04.003]
5. Farbo, M. G., Urgeghe, P. P., Fiori, S., Marcello, A., Oggiano, S., Balmas, V., ... & Migheli, Q. (2018). Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. International Journal of Food Microbiology, 284, 1-10. [DOI:10.1016/j.ijfoodmicro.2018.06.023] [PMID]
6. FraatFraatz, M. A., & Zorn, H. (2011). Fungal flavours. Industrial applications, 249-268. [DOI:10.1007/978-3-642-11458-8_12]
7. Freire E.S., V.P. Campos, D.F. Oliveira, A.M. Pohlit, N.P. Norberto & M.R. Faria, 2012. Volatile substances on the antagonism between fungi, bacteria and Meloidogyne incognita and potentially fungi for nematode control. Journal of Nematology, 44: 321-328.
8. Gulati, S., Ballhausen, M. B., Kulkarni, P., Grosch, R., & Garbeva, P. (2020). A non-invasive soil-based setup to study tomato root volatiles released by healthy and infected roots. Scientific Reports, 10(1), 12704. [DOI:10.1038/s41598-020-69468-z] [PMID] []
9. Gutjahr, C., & Parniske, M. (2013). Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annual review of cell and developmental biology, 29, 593-617. [DOI:10.1146/annurev-cellbio-101512-122413] [PMID]
10. Hussain A., M.Y. Tian, Y.R. He, J.M. Bland & W.X. Gu, 2010. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biological Control, 55 (3): 166-173. [DOI:10.1016/j.biocontrol.2010.08.009]
11. Insam, H., & Seewald, M. S. (2010). Volatile organic compounds (VOCs) in soils. Biology and fertility of soils, 46, 199-213. [DOI:10.1007/s00374-010-0442-3]
12. Kaddes, A., Fauconnier, M. L., Sassi, K., Nasraoui, B., & Jijakli, M. H. (2019). Endophytic fungal volatile compounds as solution for sustainable agriculture. Molecules, 24(6), 1065. [DOI:10.3390/molecules24061065] [PMID] []
13. Karsil, A., & Şahin, Y. S. (2021). The role of fungal volatile organic compounds (FVOCs) in biological control. Türkiye Biyolojik Mücadele Dergisi, 12(1), 79-92. [DOI:10.31019/tbmd.818701]
14. Korpi, A., Järnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical reviews in toxicology, 39(2), 139-193. [DOI:10.1080/10408440802291497] [PMID]
15. Lemfack, M. C., Gohlke, B. O., Toguem, S. M. T., Preissner, S., Piechulla, B., & Preissner, R. (2018). mVOC 2.0: a database of microbial volatiles. Nucleic acids research, 46(D1), D1261-D1265. [DOI:10.1093/nar/gkx1016] [PMID] []
16. Mitchell, A. M., Strobel, G. A., Moore, E., Robison, R., & Sears, J. (2010). Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology, 156(1), 270-277. [DOI:10.1099/mic.0.032540-0] [PMID]
17. Moisan, K., Dicke, M., Raaijmakers, J. M., Rachmawati, E., & Cordovez, V. (2021). Volatiles from the fungus Fusarium oxysporum affect interactions of Brassica rapa plants with root herbivores. Ecological Entomology, 46(2), 240-248. [DOI:10.1111/een.12956]
18. Schulz-Bohm, K., Martín-Sánchez, L., & Garbeva, P. (2017). Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Frontiers in microbiology, 8, 2484. [DOI:10.3389/fmicb.2017.02484] [PMID] []
19. Sun, L., Tsujii, Y., Xu, T., Han, M., Li, R., Han, Y., ... & Zhu, B. (2023). Species of fast bulk‐soil nutrient cycling have lower rhizosphere effects: A nutrient spectrum of rhizosphere effects. Ecology, 104(4), e3981. [DOI:10.1002/ecy.3981] [PMID]
20. Veselova, M. A., Plyuta, V. A., & Khmel, I. A. (2019). Volatile compounds of bacterial origin: structure, biosynthesis, and biological activity. Microbiology, 88, 261-274. [DOI:10.1134/S0026261719030160]
21. Zhao, X., Zhou, J., Tian, R., & Liu, Y. (2022). Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Frontiers in Microbiology, 13, 922450. [DOI:10.3389/fmicb.2022.922450] [PMID] []

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه یاسوج دانش بیماری شناسی گیاهی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb