Volume 13, Issue 1 ((Autumn & Winter) 2024)                   Plant Pathol. Sci. 2024, 13(1): 65-74 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirtalebi M, Abshang D. (2024). The role of fungal volatile organic compounds in plant disease management. Plant Pathol. Sci.. 13(1), 65-74. doi:10.61186/pps.13.1.65
URL: http://yujs.yu.ac.ir/pps/article-1-431-en.html
Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran , mmirtalebi@shirazu.ac.ir
Abstract:   (513 Views)
Abshang, A., & Mirtalebi, M. (2024). The role of fungal volatile organic compounds in plant disease management. Plant Pathology Science, 13(1), 65-74.

Volatile organic compounds (VOCs) are carbon-based organic chemicals derived from primary or secondary metabolism which are released as gases from different solids and liquids. Many intra- and inter-kingdom ecological interactions between living organisms take place through VOCs. The volatile organic compounds released by pathogenic fungi have a negative effect on the growth of plants. The release of volatiles by these fungi in the soil inhibits growth and results in a decrease in shoot length, root surface area, and plant biomass. In addition to negatively impacting plant development, these compounds generated by pathogenic fungi can also serve as growth regulators, modifying plant architecture and stimulating growth. The promotion of plant growth can, consequently, be beneficial for pathogens by offering a larger habitat for surface colonization and increasing their survival.
These compounds also increase the biosynthesis of strigolactones and root growth in interaction with fungi, facilitating the identification of mycorrhizal fungi for the roots, increasing the colonization of fungi on the roots. The antibiotic effects of VOCs are involved in the inhibition of many plant pathogens. Some of these fungal compounds have inhibitory activity in the soil and some have insect repellent and nematicidal properties.
Full-Text [PDF 1536 kb]   (303 Downloads)    
Type of Study: Extentional | Subject: Mycology
Received: 2024/01/31 | Accepted: 2024/06/2

References
1. Abdulsalam, O., Wagner, K., Wirth, S., Kunert, M., David, A., Kallenbach, M., & Krause, K. (2021). Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies). Mycorrhiza, 31, 173-188. [DOI:10.1007/s00572-020-01005-2] [PMID] []
2. Ditengou, F. A., Müller, A., Rosenkranz, M., Felten, J., Lasok, H., Van Doorn, M. M., ... & Polle, A. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature communications, 6(1), 6279. [DOI:10.1038/ncomms7279] [PMID] []
3. Duc, N. H., Vo, H. T., van Doan, C., Hamow, K. A., Le, K. H., & Posta, K. (2022). Volatile organic compounds shape belowground plant-fungi interactions. Frontiers in Plant Science, 13, 1046685. [DOI:10.3389/fpls.2022.1046685] [PMID] []
4. Effah, E., Holopainen, J. K., & McCormick, A. C. (2019). Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics, 38, 58-63. [DOI:10.1016/j.ppees.2019.04.003]
5. Farbo, M. G., Urgeghe, P. P., Fiori, S., Marcello, A., Oggiano, S., Balmas, V., ... & Migheli, Q. (2018). Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. International Journal of Food Microbiology, 284, 1-10. [DOI:10.1016/j.ijfoodmicro.2018.06.023] [PMID]
6. FraatFraatz, M. A., & Zorn, H. (2011). Fungal flavours. Industrial applications, 249-268. [DOI:10.1007/978-3-642-11458-8_12]
7. Freire E.S., V.P. Campos, D.F. Oliveira, A.M. Pohlit, N.P. Norberto & M.R. Faria, 2012. Volatile substances on the antagonism between fungi, bacteria and Meloidogyne incognita and potentially fungi for nematode control. Journal of Nematology, 44: 321-328.
8. Gulati, S., Ballhausen, M. B., Kulkarni, P., Grosch, R., & Garbeva, P. (2020). A non-invasive soil-based setup to study tomato root volatiles released by healthy and infected roots. Scientific Reports, 10(1), 12704. [DOI:10.1038/s41598-020-69468-z] [PMID] []
9. Gutjahr, C., & Parniske, M. (2013). Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annual review of cell and developmental biology, 29, 593-617. [DOI:10.1146/annurev-cellbio-101512-122413] [PMID]
10. Hussain A., M.Y. Tian, Y.R. He, J.M. Bland & W.X. Gu, 2010. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biological Control, 55 (3): 166-173. [DOI:10.1016/j.biocontrol.2010.08.009]
11. Insam, H., & Seewald, M. S. (2010). Volatile organic compounds (VOCs) in soils. Biology and fertility of soils, 46, 199-213. [DOI:10.1007/s00374-010-0442-3]
12. Kaddes, A., Fauconnier, M. L., Sassi, K., Nasraoui, B., & Jijakli, M. H. (2019). Endophytic fungal volatile compounds as solution for sustainable agriculture. Molecules, 24(6), 1065. [DOI:10.3390/molecules24061065] [PMID] []
13. Karsil, A., & Şahin, Y. S. (2021). The role of fungal volatile organic compounds (FVOCs) in biological control. Türkiye Biyolojik Mücadele Dergisi, 12(1), 79-92. [DOI:10.31019/tbmd.818701]
14. Korpi, A., Järnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical reviews in toxicology, 39(2), 139-193. [DOI:10.1080/10408440802291497] [PMID]
15. Lemfack, M. C., Gohlke, B. O., Toguem, S. M. T., Preissner, S., Piechulla, B., & Preissner, R. (2018). mVOC 2.0: a database of microbial volatiles. Nucleic acids research, 46(D1), D1261-D1265. [DOI:10.1093/nar/gkx1016] [PMID] []
16. Mitchell, A. M., Strobel, G. A., Moore, E., Robison, R., & Sears, J. (2010). Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology, 156(1), 270-277. [DOI:10.1099/mic.0.032540-0] [PMID]
17. Moisan, K., Dicke, M., Raaijmakers, J. M., Rachmawati, E., & Cordovez, V. (2021). Volatiles from the fungus Fusarium oxysporum affect interactions of Brassica rapa plants with root herbivores. Ecological Entomology, 46(2), 240-248. [DOI:10.1111/een.12956]
18. Schulz-Bohm, K., Martín-Sánchez, L., & Garbeva, P. (2017). Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Frontiers in microbiology, 8, 2484. [DOI:10.3389/fmicb.2017.02484] [PMID] []
19. Sun, L., Tsujii, Y., Xu, T., Han, M., Li, R., Han, Y., ... & Zhu, B. (2023). Species of fast bulk‐soil nutrient cycling have lower rhizosphere effects: A nutrient spectrum of rhizosphere effects. Ecology, 104(4), e3981. [DOI:10.1002/ecy.3981] [PMID]
20. Veselova, M. A., Plyuta, V. A., & Khmel, I. A. (2019). Volatile compounds of bacterial origin: structure, biosynthesis, and biological activity. Microbiology, 88, 261-274. [DOI:10.1134/S0026261719030160]
21. Zhao, X., Zhou, J., Tian, R., & Liu, Y. (2022). Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Frontiers in Microbiology, 13, 922450. [DOI:10.3389/fmicb.2022.922450] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb