Volume 12, Issue 2 ((Spring and Summer) 2023)                   Plant Pathol. Sci. 2023, 12(2): 105-116 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirzaeipour Z, Bazgir E, Zafari D, Darvishnia M. (2023). Effect of temperature and culture medium on the growth and sporulation of eight Trichoderma species. Plant Pathol. Sci.. 12(2), 105-116. doi:10.61186/pps.12.2.105
URL: http://yujs.yu.ac.ir/pps/article-1-410-en.html
Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran. , Bazgir.ei@lu.ac.ir
Abstract:   (1050 Views)
Mirzaeipour Z, Bazgir E, Zafari D, Darvishnia M (2023) Effect of temperature and culture medium on the growth and sporulation of eight Trichoderma species. Plant Pathology Science 12(2):105-116. DOI: https://doi.org/10.2982/PPS.12.2.105

Trichoderma species are important agents of biological control of soil-borne plant pathogens. The growth and reproduction of these fungi are influenced by the culture medium and temperature. This study was conducted to determine the effect of temperature and culture medium on the growth and sporulation of Trichoderma species. Ten isolates of Trichoderma species were isolated from agricultural soils of different regions of Lorestan Province, Iran. The study of morphological characteristics and sequencing of ITS-rDNA, and tef1α gene regions showed that they are belong to eight species of Trichoderma. Investigating the effect of four types of culture medium and five temperatures to determine optimum culture medium and temperature for the growth and reproduction of these fungi, showed that the Potato/Dextrose/Agar (PDA) medium is the best, and the temperature of 20 to 30 degrees Celsius is optimal for the growth and reproduction of these fungi. Evaluation of their ability to inhibit the growth of the soil-borne plant pathogenic fungus Rhizoctonia solani in vitro, showed that T. harzianum LT8 has the most inhibition ability. Therefore, this isolate can be used as a potential biocontrol agent for this plant pathogenic fungus in future research.
 
Full-Text [PDF 682 kb]   (588 Downloads)    
Type of Study: Research | Subject: Mycology
Received: 2023/04/8 | Accepted: 2023/09/11

References
1. Abbey JA, Percival D, Abbey L, Asiedu SK, Prithiviraj B, Schilder A (2019) Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)-prospects and challenges. Biocontrol Science and Technology 29(3):207-228. [DOI:10.1080/09583157.2018.1548574]
2. Agusti-Brisach C, Armengol J (2012). Effects of temperature, pH and water potential on mycelial growth, sporulation and chlamydospore production in culture of Cylindrocarpon spp. associated with black foot of grapevines. Phytopathologia Mediterranea 1:37-50.
3. Ali MI, Yasser MM, Mousa AS, Khalek MA (2012) Optimization of factors affecting proliferation and flourishment of Trichoderma harzianum in Egyptian soil. Journal of Basic and Applied Mycology 3(1):41-48.
4. Ali SR, Fradi AJ, Al-Aaraji AM (2017) Effect of some physical factors on growth of five fungal species. Eur. Acad. Res. 2(2):1069-78.
5. Atanasova L, Druzhinina IS, Jaklitsch WM (2013) Two hundred Trichoderma species recognized on the basis of molecular phylogeny. pp.10-42, In: Trichoderma: Biology and Applications, Cabi., Wallingford, UK. [DOI:10.1079/9781780642475.0010]
6. Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. International Microbiology 7(4):249-60.
7. Bissett J (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can. J. Bot. 62:924-31. [DOI:10.1139/b84-131]
8. Cai F, Druzhinina IS (2021) In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity 107:1-69. [DOI:10.1007/s13225-020-00464-4]
9. Carro-Huerga G, Mayo-Prieto S, Rodríguez-González Á, Álvarez-García S, Gutiérrez S, Casquero PA (2021) The influence of temperature on the growth, sporulation, colonization, and survival of Trichoderma spp. in grapevine pruning wounds. Agronomy 11(9):1771. [DOI:10.3390/agronomy11091771]
10. Chao W, Zhuang WY (2019) Evaluating effective Trichoderma isolates for biocontrol of Rhizoctonia solani causing root rot of Vigna unguiculata. J. Integr. Agric. 18(9): 2072-2079. [DOI:10.1016/S2095-3119(19)62593-1]
11. Contreras-Cornejo HA, Macías-Rodríguez L, Del-Val EK, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology 92(4):fiw036. [DOI:10.1093/femsec/fiw036]
12. Dennis L, Webster J (1971) Antagonistic properties of species groups of Trichoderma. I. Production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 57:25-29. [DOI:10.1016/S0007-1536(71)80077-3]
13. Domingues MV, Moura KE, Salomão D, Elias LM, Patricio FR (2016) Effect of temperature on mycelial growth of Trichoderma, Sclerotinia minor and S. sclerotiorum, as well as on mycoparasitism. Summa Phytopathologica 42:222-7. [DOI:10.1590/0100-5405/2146]
14. Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang D, Miao Y, Rahimi MJ, Grujic M, Cai F, Pourmehdi S, Salim KA (2018) Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genetics 14(4):e1007322. Elad Y, Chet I (1983) Improved selective media for isolation of Trichoderma spp. or Fusarium spp. Phytoparasitica 11:55-58. https://doi.org/10.1007/BF02980712 [DOI:10.1371/journal.pgen.1007322]
15. Gade RM, Armarkar SV, Wardhe S (2009) Effect of Soil types and Nutritional factors on Growth and Sporulation of Trichoderma species. Annals of Plant Protection Sciences 17(1):111-3.
16. Galarza L, Akagi Y, Takao K, Kim CS, Maekawa N, Itai A, Peralta E, Santos E, Kodama M (2015) Characterization of Trichoderma species isolated in Ecuador and their antagonistic activities against phytopathogenic fungi from Ecuador and Japan. Journal of General Plant Pathology 81:201-10. [DOI:10.1007/s10327-015-0587-x]
17. Gams W, Bissett J (2002) Morphology and identification of Trichoderma and Gliocladium. 3-31.
18. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2(1):43-56. Hewedy OA, Abdel Lateif KS, Seleiman MF, Shami A, Albarakaty FM, M. El-Meihy R (2020) Phylogenetic diversity of Trichoderma strains and their antagonistic potential against soil-borne pathogens under stress conditions. Biology 9(8):189. https://doi.org/10.3390/biology9080189 [DOI:10.1038/nrmicro797]
19. Hu J, Chen K, Li J, Wei Y, Wang Y, Wu Y, Yang H, Zhou Y, Ryder MH, Denton MD (2020) Large-scale Trichoderma diversity was associated with ecosystem, climate and geographic location. Environmental Microbiology 22(3):1011-24. Jackson AM, Whipps JM, Lynch JM (1991) Effects of temperature, pH and water potential on growth of four fungi with disease biocontrol potential. World Journal of Microbiology and Biotechnology 7(4):494-501.https://doi.org/10.1007/BF00303376 Jaklitsch WM, Voglmayr H (2015) Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology 80:1-87. https://doi.org/10.1016/j.simyco.2014.11.001 Kamala TH, Devi SI (2012) Biocontrol properties of indigenous Trichoderma isolates from North-east India against Fusarium oxysporum and Rhizoctonia solani. Afr. J. Biotechnol. 11(34):8491-8499. https://doi.org/10.5897/AJB11.1938 [DOI:10.1111/1462-2920.14798]
20. Kannangara S, Dharmarathna RMGC (2017) Isolation, identification and characterization of Trichoderma species as a potential biocontrol agent against Ceratocystis paradoxa. The Journal of Agricultural Sciences 12(1):51-62. [DOI:10.4038/jas.v12i1.8206]
21. Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technology and Biotechnology 41(1):37-42.
22. Laila N, Nur S, Nor A, Afiqah BK, Karim SM (2019) Trichoderma species diversity in rhizosphere soils and potential antagonism with Fusarium oxysporum. Bioscience Journal 35(1):13-26. [DOI:10.14393/BJ-v35n1a2019-41605]
23. Limón M, Chacón M, Mejías R, Delgado-Jarana J, Rincón A, Codón A, Benítez T (2004) Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl. Microbiol. Biotechnol. 64: 675-685. López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196:109-23.https://doi.org/10.1016/j.scienta.2015.08.043 [DOI:10.1007/s00253-003-1538-6]
24. Lumbsch HT, Huhndorf SM (2007) Whatever happened to the pyrenomycetes and loculoascomycetes ?. Mycological Research 111(9):1064-74. [DOI:10.1016/j.mycres.2007.04.004]
25. Malathi P, Doraisamy S (2003) Effect of temperature on growth and antagonistic activity of Trichoderma spp. against Macrophomina phaseolina. Journal of Biological Control 8:153-9.
26. Maurya MK, Srivastava M, Singh A, Pandey S, Ratan V (2017) Effect of different temperature and culture media on the mycelia growth of Trichoderma viride isolates. Int. J. Curr. Microbiol. Appl. 60:266-9. [DOI:10.20546/ijcmas.2017.602.032]
27. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annual Review of Phytopathology 51:105-29. [DOI:10.1146/annurev-phyto-082712-102353]
28. Mukhopadhyay R, Kumar D (2020) Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control 30(1):1-8. Mustafa A, Khan MA, Inam-ul-Haq M, Pervez MA, Umar U (2009) Usefulness of different culture media for in vitro evaluation of Trichoderma spp. against seed borne fungi of economic importance. Pakistan Journal of Phytopathology 21(1):83-8. [DOI:10.1186/s41938-020-00333-x]
29. Ramírez-Valdespino CA, Casas-Flores S, Olmedo-Monfil V (2019) Trichoderma as a model to study effector-like molecules. Frontiers in Microbiology 15;10:1030. [DOI:10.3389/fmicb.2019.01030]
30. Ruano-Rosa D, del Moral-Navarrete L, Lopez-Herrera CJ (2010) Selection of Trichoderma spp. isolates antagonistic to Rosellinia necatrix. Span. J. Agric. Res. 8(4): 1084-1097. [DOI:10.5424/sjar/2010084-1403]
31. Santamarina MP, Rosello J (2006) Influence of temperature and water activity on the antagonism of Trichoderma harzianum to Verticillium and Rhizoctonia. Crop Protection 25(10):1130-4. [DOI:10.1016/j.cropro.2006.02.006]
32. Shahid M, Singh A, Srivastava M, Mishra RP, Biswas SK (2011) Effect of temperature, pH and media for growth and sporulation of Trichoderma longibrachiatum and selflife study in carrier based formulations. Annals of Plant Protection Sciences 19(1):147-9.
33. Sharma KK, Singh US (2014) Cultural and morphological characterization of rhizospheric isolates of fungal antagonist Trichoderma. Int. J. Appl. Nat. Sci. 6(2): 451-6. [DOI:10.31018/jans.v6i2.481]
34. Sharma S, Kour D, Rana K.L, Dhiman A, Thakur S, Thakur P, Thakur S, Thakur N, Sudheer S, Yadav N and Yadav AN (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives, pp.85-120. [DOI:10.1007/978-3-030-10480-1_3]
35. Silva de Oliveira R, Martins A, Martins AL, Nunes HV, Nunes BH, Chagas LF, Chagas Júnior AF (2021) Biocontrole in vitro de Trichoderma spp. para os patógenos Rhizoctonia solani, Fusarium oxysporum e Curvularia lunata. Rev. Fac. Cienc. Agrar. 44(1): 61-70.
36. Singh A, Shahid M, Srivastava M, Pandey S, Sharma A, Kumar V (2014) Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol. Mycol. 3(1):1-7.
37. Singh A, Shukla N, Kabadwal BC, Tewari AK, Kumar J (2018) Review on plant-Trichoderma-pathogen interaction. International Journal of Current Microbiology and Applied Sciences 7(2):2382-97. [DOI:10.20546/ijcmas.2018.702.291]
38. Singh OP, Kumar S (2009) Trichoderma spp. Growth as influenced by Temperatures. Annals of Plant Protection Sciences 17(1):261.
39. Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A (2020) Trichoderma: The "secrets" of a multitalented biocontrol agent. Plants 9(6):762. [DOI:10.3390/plants9060762]
40. Thapa S, Sntang N, Kumari Limbu A, Joshi A (2020) Impact of Trichoderma sp. in Agriculture: A Mini-Review. Journal of Biology and Today's World 9(7):227
41. Waghunde RR, Shelake RM, Sabalpara AN. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research. 11(22):1952-65. [DOI:10.5897/AJAR2015.10584]
42. Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8:71-126. [DOI:10.2174/1874437001408010071]
43. Zehra A, Dubey MK, Meena M, Upadhyay RS (2017) Effect of different environmental conditions on growth and sporulation of some Trichoderma species. Journal of Environmental Biology 38(2):197. [DOI:10.22438/jeb/38/2/MS-251]
44. Zin NA, Badaluddin NA (2020) Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences 65(2):168-78. [DOI:10.1016/j.aoas.2020.09.003]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb