Volume 12, Issue 1 ((Autumn & Winter) 2023)                   Plant Pathol. Sci. 2023, 12(1): 113-121 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tahmasebi A. (2023). The role of translation initiation factors in plants recessive resistance to viruses. Plant Pathol. Sci.. 12(1), 113-121. doi:10.52547/pps.12.1.113
URL: http://yujs.yu.ac.ir/pps/article-1-374-en.html
Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran. , a.tahmasbi@hormozgan.ac.ir
Abstract:   (1323 Views)
Tahmasebi, A. (2023). The role of translation initiation factors in plants recessive resistance to viruses. Plant Pathology Science, 12(1), 113-121.             
       
Abstract
Plant viruses are important pathogens that cause quantitative and qualitative decline of agricultural products all over the world. Plants resistance is the most effective way to control plant viruses. Viruses as obligate parasites to complete their infection cycle, such as the processes of protein synthesis, replication, and movement, are dependent on the compatibility of cellular factors of host plants. Absence or mutation in these essential factors for the virus infection cycle or mutation in the regulator of plant defense responses may cause the host's recessive resistance to the virus. Recessive genes identified in virus-plant interactions include eukaryotic translation initiation factors eIF4E, eIF4G, and their isoforms. A number of translation factors have been identified in plants, such as eIF3, eEF1A, and eEF1B, which are essential in interacting with viral RNAs and regulating various processes in the virus infection cycle. More awareness of molecular mechanisms of these factors as well as their interaction with other host and viral factors can be used in the development of new management methods such as silencing or genome editing against viruses.
Full-Text [PDF 412 kb]   (509 Downloads)    
Type of Study: Extentional | Subject: Special
Received: 2022/06/14 | Accepted: 2022/08/29

References
1. Albar, L., Bangratz‐Reyser, M., Hébrard, E., Ndjiondjop, M. N., Jones, M., & Ghesquière, A. (2006). Mutations in the eIF (iso) 4G translation initiation factor confer high resistance of rice-to-Rice yellow mottle virus. The Plant Journal, 47(3), 417-426. [DOI:10.1111/j.1365-313X.2006.02792.x] [PMID]
2. Calvo, M., Martínez-Turiño, S., & García, J. A. (2014). Resistance to Plum pox virus strain C in Arabidopsis thaliana and Chenopodium foetidum involves genome-linked viral protein and other viral determinants and might depend on compatibility with host translation initiation factors. Molecular Plant-Microbe Interactions, 27(11), 1291-1301. [DOI:10.1094/MPMI-05-14-0130-R] [PMID]
3. Diaz-Pendon, J. A., Truniger, V., Nieto, C., Garcia‐MAS, J. I., Bendahmane, A., & Aranda, M. A. (2004). Advances in understanding recessive resistance to plant viruses. Molecular Plant Pathology, 5(3), 223-233. [DOI:10.1111/j.1364-3703.2004.00223.x] [PMID]
4. Dreher, T. W., & Miller, W. A. (2006). Translational control in positive strand RNA plant viruses. Virology, 344(1), 185-197. [DOI:10.1016/j.virol.2005.09.031] [PMID] [PMCID]
5. Goodfellow, I. G., & Roberts, L. O. (2008). Eukaryotic initiation factor 4E. The international Journal of Biochemistry & Cell Biology, 40(12), 2675-2680. [DOI:10.1016/j.biocel.2007.10.023] [PMID] [PMCID]
6. Han, S. J., Heo, K. J., Choi, B., & Seo, J. K. (2019) Recessive Resistance: Developing Targets for Genome Editing to Engineer Viral Disease Resistant Crops. Research in Plant Disease, 25(2), 49-61. [DOI:10.5423/RPD.2019.25.2.49]
7. Hashimoto, M., Neriya, Y., Yamaji, Y., & Namba, S. (2016). Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Frontiers in Microbiology, 7, 1695. [DOI:10.3389/fmicb.2016.01695] [PMID] [PMCID]
8. Hinnebusch, A. G. (2014). The scanning mechanism of eukaryotic translation initiation. Annual Review of Biochemistry, 83, 779-812. [DOI:10.1146/annurev-biochem-060713-035802] [PMID]
9. Hinnebusch, A. G., & Lorsch, J. R. (2012). The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harbor Perspectives in Biology, 4(10), a011544. [DOI:10.1101/cshperspect.a011544] [PMID] [PMCID]
10. Hwang, J., Oh, C. S., & Kang, B. C. (2013). Translation elongation factor 1B (eEF1B) is an essential host factor for Tobacco mosaic virus infection in plants. Virology, 439(2), 105-114. [DOI:10.1016/j.virol.2013.02.004] [PMID]
11. Itoh, N., Yamada, H., Kaziro, Y., & Mizumoto, K. (1987). Messenger RNA guanylyltransferase from Saccharomyces cerevisiae. Large scale purification, subunit functions, and subcellular localization. Journal of Biological Chemistry, 262(5), 1989-1995. [DOI:10.1016/S0021-9258(18)61609-6] [PMID]
12. Kang, B. C., Yeam, I., & Jahn, M. M. (2005). Genetics of plant virus resistance. Annual Review of Phytopathology, 43, 581-621. [DOI:10.1146/annurev.phyto.43.011205.141140] [PMID]
13. Kang, B. C., Yeam, I., Li, H., Perez, K. W., & Jahn, M. M. (2007). Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnology Journal, 5(4), 526-536. [DOI:10.1111/j.1467-7652.2007.00262.x] [PMID]
14. Kawaguchi, R., & Bailey-Serres, J. (2002). Regulation of translational initiation in plants. Current Opinion in Plant Biology, 5(5), 460-465. [DOI:10.1016/S1369-5266(02)00290-X] [PMID]
15. Khan, M. A., Miyoshi, H., Ray, S., Natsuaki, T., Suehiro, N., & Goss, D. J. (2006). Interaction of genome-linked protein (VPg) of turnip mosaic virus with wheat germ translation initiation factors eIFiso4E and eIFiso4F. Journal of Biological Chemistry, 281(38), 28002-28010. [DOI:10.1074/jbc.M605479200] [PMID]
16. Kobayashi, K., Sekine, K. T., & Nishiguchi, M. (2014). Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance?. Journal of General Plant Pathology, 80, 327-336. [DOI:10.1007/s10327-014-0527-1]
17. Koeda, S., Onouchi, M., Mori, N., Pohan, N. S., Nagano, A. J., & Kesumawati, E. (2021). A recessive gene pepy-1 encoding Pelota confers resistance to begomovirus isolates of PepYLCIV and PepYLCAV in Capsicum annuum. Theoretical and Applied Genetics, 134(9), 2947-2964. [DOI:10.1007/s00122-021-03870-7] [PMID]
18. Lapidot, M., Karniel, U., Gelbart, D., Fogel, D., Evenor, D., Kutsher, Y., ... & Levin, I. (2015). A novel route controlling begomovirus resistance by the messenger RNA surveillance factor pelota. PLoS Genetics, 11(10), e1005538. [DOI:10.1371/journal.pgen.1005538] [PMID] [PMCID]
19. Lee, J. H., Muhsin, M., Atienza, G. A., Kwak, D. Y., Kim, S. M., De Leon, T. B., ... & Choi, I. R. (2010). Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus. Molecular Plant-Microbe Interactions, 23(1), 29-38. [DOI:10.1094/MPMI-23-1-0029] [PMID]
20. Li, G., Qian, W., Zhang, S., Zhang, S., Li, F., Zhang, H., & Sun, R. (2018). Variability in eukaryotic initiation factor iso4E in Brassica rapa influences interactions with the viral protein linked to the genome of Turnip mosaic virus. Scientific Reports, 8(1), 13588. [DOI:10.1038/s41598-018-31739-1] [PMID] [PMCID]
21. Li, G., Zhang, S., Li, F., Zhang, H., Zhang, S., Zhao, J., & Sun, R. (2021). Variability in the viral protein linked to the genome of turnip mosaic virus influences interactions with eIF (iso) 4Es in Brassica rapa. The Plant Pathology Journal, 37(1), 47. [DOI:10.5423/PPJ.OA.07.2020.0125] [PMID] [PMCID]
22. Li, L., Luo, C., Huang, F., Liu, Z., An, Z., Dong, L., & He, X. (2019). Identification and characterization of the mango eIF gene family reveals MieIF1A-a, which confers tolerance to salt stress in transgenic Arabidopsis. Scientia Horticulturae, 248, 274-281. [DOI:10.1016/j.scienta.2019.01.025]
23. Maule, A. J., Caranta, C., & Boulton, M. I. (2007). Sources of natural resistance to plant viruses: status and prospects. Molecular Plant Pathology, 8(2), 223-231. [DOI:10.1111/j.1364-3703.2007.00386.x] [PMID]
24. Nicaise, V. (2014). Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Science, 5, 660. [DOI:10.3389/fpls.2014.00660] [PMID] [PMCID]
25. Nicaise, V., Gallois, J. L., Chafiai, F., Allen, L. M., Schurdi-Levraud, V., Browning, K. S., & German-Retana, S. (2007). Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Letters, 581(5), 1041-1046. [DOI:10.1016/j.febslet.2007.02.007] [PMID]
26. Nicholson BL, White KA (2011) 3' cap-independent translation enhancers of positive-strand RNA plant viruses. Current Opinion in Virology 1:373-380. [DOI:10.1016/j.coviro.2011.10.002] [PMID]
27. Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., & Bendahmane, A. (2006). An eIF4E allele confers resistance to an uncapped and non‐polyadenylated RNA virus in melon. The Plant Journal, 48(3), 452-462. [DOI:10.1111/j.1365-313X.2006.02885.x] [PMID]
28. Nieto, C., Rodríguez‐Moreno, L., Rodríguez‐Hernández, A. M., Aranda, M. A., & Truniger, V. (2011). Nicotiana benthamiana resistance to non‐adapted Melon necrotic spot virus results from an incompatible interaction between virus RNA and translation initiation factor 4E. The Plant Journal, 66(3), 492-501. [DOI:10.1111/j.1365-313X.2011.04507.x] [PMID]
29. Pyott, D. E., Sheehan, E., & Molnar, A. (2016). Engineering of CRISPR/Cas9‐mediated potyvirus resistance in transgene‐free Arabidopsis plants. Molecular Plant Pathology, 17(8), 1276-1288. [DOI:10.1111/mpp.12417] [PMID] [PMCID]
30. Robaglia, C., & Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends in Plant Science, 11(1), 40-45. [DOI:10.1016/j.tplants.2005.11.004] [PMID]
31. Ruffel, S., Gallois, J. L., Moury, B., Robaglia, C., Palloix, A., & Caranta, C. (2006). Simultaneous mutations in translation initiation factors eIF4E and eIF (iso) 4E are required to prevent pepper veinal mottle virus infection of pepper. Journal of General Virology, 87(7), 2089-2098. [DOI:10.1099/vir.0.81817-0] [PMID]
32. Sanfaçon, H. (2015). Plant translation factors and virus resistance. Viruses, 7(7), 3392-3419. [DOI:10.3390/v7072778] [PMID] [PMCID]
33. Schmitt-Keichinger, C. (2019). Manipulating cellular factors to combat viruses: a case study from the plant eukaryotic translation initiation factors eIF4. Frontiers in Microbiology, 10, 17. [DOI:10.3389/fmicb.2019.00017] [PMID] [PMCID]
34. Shopan, J., Mou, H., Zhang, L., Zhang, C., Ma, W., Walsh, J. A., & Zhang, M. (2017). Eukaryotic translation initiation factor 2B‐beta (eIF 2Bβ), a new class of plant virus resistance gene. The Plant Journal, 90(5), 929-940. [DOI:10.1111/tpj.13519] [PMID]
35. Sonenberg, N., Morgan, M. A., Merrick, W. C., & Shatkin, A. J. (1978). A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5'-terminal cap in mRNA. Proceedings of the National Academy of Sciences, 75(10), 4843-4847. [DOI:10.1073/pnas.75.10.4843] [PMID] [PMCID]
36. Soosaar, J. L., Burch-Smith, T. M., & Dinesh-Kumar, S. P. (2005). Mechanisms of plant resistance to viruses. Nature Reviews Microbiology, 3(10), 789-798. [DOI:10.1038/nrmicro1239] [PMID]
37. Takakura, Y., Udagawa, H., Shinjo, A., & Koga, K. (2018). Mutation of a Nicotiana tabacum L. eukaryotic translation‐initiation factor gene reduces susceptibility to a resistance‐breaking strain of Potato virus Y. Molecular Plant Pathology, 19(9), 2124-2133. [DOI:10.1111/mpp.12686] [PMID] [PMCID]
38. Truniger, V., & Aranda, M. A. (2009). Recessive resistance to plant viruses. Advances in Virus Research, 75, 119-231. [DOI:10.1016/S0065-3527(09)07504-6] [PMID]
39. Truniger, V. A., Gad, M. A., & John, L. PC.(2009). Chapter 4-Recessive Resistance to Plant Viruses. Advances in Virus Research: Academic Press, 119-231. [DOI:10.1016/S0065-3527(09)07504-6] [PMID]
40. Tsuda, S., & Sano, T. (2014). Threats to Japanese agriculture from newly emerged plant viruses and viroids. Journal of General Plant Pathology, 80, 2-14. [DOI:10.1007/s10327-013-0475-1]
41. Parsyan, A. (Ed.). (2014). Translation and its regulation in cancer biology and medicine (No. 15182). Springer Netherlands. [DOI:10.1007/978-94-017-9078-9]
42. Wittmann, S., Chatel, H., Fortin, M. G., & Laliberté, J. F. (1997). Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational Eukaryotic Initiation Factor (iso) 4E of Arabidopsis thaliana Using the Yeast two-hybrid system. Virology, 234(1), 84-92. [DOI:10.1006/viro.1997.8634] [PMID]
43. Yoshii, M., Nishikiori, M., Tomita, K., Yoshioka, N., Kozuka, R., Naito, S., & Ishikawa, M. (2004). The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. Journal of Virology, 78(12), 6102-6111. [DOI:10.1128/JVI.78.12.6102-6111.2004] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb