Volume 9, Issue 2 ((Spring and Summer) 2020)                   Plant Pathol. Sci. 2020, 9(2): 37-50 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi Z, Nazarian-Firouzabadi F, Nazari Z. (2020). The expression level of genes encoding LysM-RLKs of potato after stimulation with chitin. Plant Pathol. Sci.. 9(2), 37-50. doi:10.52547/pps.9.2.37
URL: http://yujs.yu.ac.ir/pps/article-1-311-en.html
Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran , nazarian.f@lu.ac.ir
Abstract:   (4857 Views)
Mohammadi Z, Nazarian-Firouzabadi F, Nazari Z (2020). The expression level of genes encoding LysM-RLKs of potato after stimulation with chitin. Plant Pathology Science 9(2):37-50.         DOI: 10.2982/PPS.9.2.37.
Introduction: Lysine motif receptor-like kinases (LysM-RLKs) play an important role in the defense reaction of plants to diseases and environmental stresses. This study was conducted to investigate the effect of chitin as a stimulus for the expression of genes that encode LysM-RLKs. Materials and Methods: The expression levels of three genes PGSC0003DMP400010799, PGSC0003DMP400010800 and PGSC0003DMP400061331, which encoded LysM-RLKs due to chitin treatment (150 μg / ml) in young seven-week potato leaves of Jely cultivar, were examined in treated and control leaves. Results: Analysis of the gene expression data showed that the expression of all three genes increased significantly due to the use of chitin compared to the control. Conclusion: Increasing the expression of genes encoding LysM-RLKs using chitin can be effective to induce systemic resistance to plant diseases and environmental stresses.
Full-Text [PDF 1066 kb]   (1889 Downloads)    
Type of Study: Research | Subject: Special
Received: 2020/08/12 | Accepted: 2020/12/22

References
1. Abedini A, Amiri H, Karimi K )2020( Efficient biobutanol production from potato peel wastes by separate and simultaneous inhibitors removal and pretreatment. Renewable Energy 160:269-77. [DOI:10.1016/j.renene.2020.06.112]
2. Arrighi J F, Barre A, Amor BB, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet E-P, Ghérardi M, Huguet T (2006) The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiology 142:265-279. [DOI:10.1104/pp.106.084657] [PMID] [PMCID]
3. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-983. [DOI:10.1038/415977a] [PMID]
4. Bateman A, Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). Journal of Molecular Biology 299:1113-1119. [DOI:10.1006/jmbi.2000.3778] [PMID]
5. Bittel P and Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology 10:335-341. [DOI:10.1016/j.pbi.2007.04.021] [PMID]
6. Bolton MD, Van Esse HP, Vossen JH, De Jonge R, Stergiopoulos I, Stulemeijer IJ, Van Den Berg GC, Borrás‐Hidalgo O, Dekker HL, De Koster CG (2008) The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology 69:119-136. [DOI:10.1111/j.1365-2958.2008.06270.x] [PMID]
7. Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido) glycans. Molecular Microbiology 68:838-847. [DOI:10.1111/j.1365-2958.2008.06211.x] [PMID]
8. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. [DOI:10.1016/j.cell.2006.02.008] [PMID]
9. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology 16:537. [DOI:10.1038/nri.2016.77] [PMID]
10. Cui Y, Li X, Yu M, Li, R, Fan, L, Zhu, Y, Lin, J (2018) Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis. Development 145. [DOI:10.1242/dev.165688] [PMID]
11. Durrant WE, Dong X (2004) Systemic acquired resistance. Annual Review of Phytopathology 42:185-209. [DOI:10.1146/annurev.phyto.42.040803.140421] [PMID]
12. Faostat (2016) Food and agriculture organization of the united nations, 2010. Roma, Italy.
13. Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj P K, Rani A, Singh R S, Raizada J, Singh K (2011) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Research Notes 4:1-5. [DOI:10.1186/1756-0500-4-85] [PMID] [PMCID]
14. Gong BQ, Wang FZ, Li JF (2020) Hide-and-seek: chitin-triggered plant immunity and fungal counterstrategies. Trends in Plant Science (In press). [DOI:10.1016/j.tplants.2020.03.006] [PMID]
15. Huang C, Yan Y, Zhao H, Ye Y, Cao Y (2020) Arabidopsis CPK5 Phosphorylates the Chitin Receptor LYK5 to Regulate Plant Innate Immunity. Frontiers in Plant Science 11:702. [DOI:10.3389/fpls.2020.00702] [PMID] [PMCID]
16. Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Current Opinion in Plant Biology 5:415-424. [DOI:10.1016/S1369-5266(02)00285-6]
17. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323-329. [DOI:10.1038/nature05286] [PMID]
18. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences 103:11086-11091. [DOI:10.1073/pnas.0508882103] [PMID] [PMCID]
19. Kombrink A, Thomma BP (2013) LysM effectors: secreted proteins supporting fungal life. PLoS Pathogens 9:e1003769. [DOI:10.1371/journal.ppat.1003769] [PMID] [PMCID]
20. Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630-633. [DOI:10.1126/science.1090074] [PMID]
21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402-408. [DOI:10.1006/meth.2001.1262] [PMID]
22. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N (2003) A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature 425:637-640. [DOI:10.1038/nature02045] [PMID]
23. Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE, Thomma BP, Rudd JJ (2011) Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiology 156:756-769. [DOI:10.1104/pp.111.176347] [PMID] [PMCID]
24. Mentlak TA, Talbot NJ, Kroj T (2011) Effector translocation and delivery by the rice blast fungus Magnaporthe oryzae. Effectors in Plant-Microbe Interactions 219-241. [DOI:10.1002/9781119949138.ch9]
25. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences 104:19613-19618. [DOI:10.1073/pnas.0705147104] [PMID] [PMCID]
26. Moslemkhani C, Mozafari J (2016) Management of Bacterial Wilt Disease of Potato by Health Assay of Seed Tubers. Plant Pathology Science 5:62-75. (In Persian with English Abstract).
27. Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science 10:339-346. [DOI:10.1016/j.tplants.2005.05.009] [PMID]
28. Nazarian Firuzabadi F, Kushalappa A (2019) Polymorphism and Expression Analysis of two Potato Receptor Genes (LysM-RLKs), Following Alternaria solani Infection. Applied Researches in Plant Protection 8:33-48. (In Persian with English Abstract).
29. Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. Journal of Biological Chemistry 285:28902-28911. [DOI:10.1074/jbc.M110.116657] [PMID] [PMCID]
30. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585-592. [DOI:10.1038/nature02039] [PMID]
31. Rezzonico F, Rupp O, Fahrentrapp J (2017) Pathogen recognition in compatible plant-microbe interactions. Scientific Reports 7:1-12. [DOI:10.1038/s41598-017-04792-5] [PMID] [PMCID]
32. Rich AE (2013) Potato Diseases. Academic Press.
33. Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Science's STKE 200:re22-re22. [DOI:10.1126/stke.2001.113.re22] [PMID]
34. Takahashi Y, Soyano T, Kosetsu K, Sasabe M, Machida Y (2010) HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant and Cell Physiology 51:1766-1776. [DOI:10.1093/pcp/pcq135] [PMID] [PMCID]
35. Thomma BP, Nürnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell 23:4-15. [DOI:10.1105/tpc.110.082602] [PMID] [PMCID]
36. Valadi S, Soleimani M J, Karamian G K, Ghiasvand T (2013) Effect of salicylic acid & chitosan on induction of resistance in chickpea against fusarial wilt and root rot. Iranian Journal of Plant Pathology 2:181-199. (In Persian with English Abstract).
37. Wang C, Wang G, Zhang C, Zhu P, Dai H, Yu N, He Z, Xu L, Wang E (2017) OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Molecular Plant 10:619-633. [DOI:10.1016/j.molp.2017.01.006] [PMID]
38. Zhang XC, Wu X, Findley S, Wan J, Libault M, Nguyen HT, Cannon S B, Stacey G (2007) Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiology 144:623-636. [DOI:10.1104/pp.107.097097] [PMID] [PMCID]
39. Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Current opinion in Plant Biology 12:414-420. [DOI:10.1016/j.pbi.2009.06.003] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb