Volume 9, Issue 2 (8-2020)                   pps 2020, 9(2): 28-36 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi F, Rahmnapour S, Rezaee S, Larijani K. Identification of growth inhibitor of Sclerotinia sclerotiorum in Indian mustard leaf. pps. 2020; 9 (2) :28-36
URL: http://yujs.yu.ac.ir/pps/article-1-293-en.html
Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University, Rafsanjan, Iran. , faterahimi@gmail.com
Abstract:   (431 Views)
Rahimi F, Rahmanpour S, Rezaei S, Larijani K (2020). Identification of growth inhibitor of Sclerotinia sclerotiorum in Indian mustard leaf. Plant Pathology Science
9(2):28-36.       DOI: 10.2982/PPS.9.2.28.

Introduction: Sclerotinia sclerotiorum is the causal agent of white rot in aerial parts of a wide range of plants. The aim of this study was to compare the reaction of living tissue of Indian mustard leaves on the growth of this fungus under open and closed leaf stomata conditions. Materials and Methods: The pure isolate of the fungus was prepared by the hyphal-tip method on water-agar medium. An experiment was conducted in a fully randomized design with four treatments. The formation of fungal growth inhibiting compounds in the leaf tissue of all treatments was examined using GC-MS.
Results: Analysis of variance of the experimental data showed that the diameter of the fungal colony was significantly smaller in the treatment with open leaf stomata than in the other treatments. Gas chromatography data analysis showed that 1-propene-3-isothiocyanate as a volatile compound inhibits fungal growth in this treatment. Conclusion: The production of the volatile allyl isothiocyanate compound in Indian mustard leaf inhibits the growth of S. sclerotiorum.
 
Full-Text [PDF 541 kb]   (130 Downloads)    
Type of Study: Research | Subject: Special

References
1. Ahuja I, De Vos R C, Rohloff J, (2016) Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle. Scientific Reports 66:1-14. [DOI:10.1038/srep38990] [PMID] [PMCID]
2. Brader G Mikkelsen, M D, Halkier B A, Tapio Palva E (2006) Altering glucosinolate profiles modulates disease resistance in plants. The Plant Journal 46:758-767. [DOI:10.1111/j.1365-313X.2006.02743.x] [PMID]
3. Brown P D, Morra M J (1996) Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant and Soil 181:307-316. [DOI:10.1007/BF00012065]
4. Brown P D, Morra M J, McCaffrey J P, Auld D L, Williams L (1991) Allelochemicals produced during glucosinolate degradation in soil. Journal of Chemical Ecology 17:2021-2034. [DOI:10.1007/BF00992585] [PMID]
5. Brown P D, Tokuhisa J G, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471-481. [DOI:10.1016/S0031-9422(02)00549-6]
6. Cessna S G, Sears V E, Dickman M B, Low P S (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. The Plant Cell 12:2191-2199. https://doi.org/10.2307/3871114 [DOI:10.1105/tpc.12.11.2191] [PMID] [PMCID]
7. Dixon G R (2007) Vegetable Brassicas and Related Crucifers (No. 14). CABI, 327p. [DOI:10.1079/9780851993959.0000]
8. Fahey J W, Zalcmann A T, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. [DOI:10.1016/S0031-9422(00)00316-2]
9. Guimaraes R L, Stotz H U (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiology 136:3703-3711. [DOI:10.1104/pp.104.049650] [PMID] [PMCID]
10. Hegedus D D, Rimmer S R (2005) Sclerotinia sclerotiorum: when "to be or not to be" a pathogen? FEMS Microbiology Letters 251:177-84 [DOI:10.1016/j.femsle.2005.07.040] [PMID]
11. Hegedus D D, Gerbrandt K, Coutu C (2016) The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum. Molecular Plant Pathology 17:634-647. [DOI:10.1111/mpp.12321] [PMID] [PMCID]
12. Hossain M S, Ye W, Hossain M A Okuma E, Uraji M, Nakamura Y, Murata, Y (2013) Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Bioscience, biotechnology, and biochemistry 120928. [DOI:10.1271/bbb.120928] [PMID]
13. Khokon M A R, Jahan M S (2011) Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant, Cell & Environment 34:1900-1906. [DOI:10.1111/j.1365-3040.2011.02385.x] [PMID]
14. Rahmanpour S, Backhouse D, Nonhebel H M (2008) Studies on the role of the glucosinolate-myrosinase system resistance of oilseed rape to Sclerotinia sclerotiorum, Ph.D. Thesis, University of New England, Australia.
15. Rahmanpour S, Backhouse D, Nonhebel H M (2010) Reaction of glucosinolate-myrosinase defence system in Brassica plants to pathogenicity factor of Sclerotinia sclerotiorum. European Journal of Plant Pathology 128:429-433. [DOI:10.1007/s10658-010-9685-y]
16. Redovnikovic I R, Glivetic T, Vorkapic-Furac J (2008) Glucosinolates and their potential role in the ant. Periodical Biologorum 110:297-309.
17. Rollins J A, Dickman M B (2001) pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Applied and Environmental Microbiology 67:75-81. [DOI:10.1128/AEM.67.1.75-81.2001] [PMID] [PMCID]
18. Stotz, H U, Sawada Y, Shimada Y, Hirai, M Y, Sasaki E, Krischke M, Kamiya Y (2011) Role of camalexin, indole glucosinolates, and side-chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. The Plant Journal 67:81-93. [DOI:10.1111/j.1365-313X.2011.04578.x] [PMID]
19. Tholl D, Boland W, Hansel A, Loreto F, Rose U S R, Schnitzler J (2006) Practical approaches to plant volatile analysis. The Plant Journal 45:540-560. [DOI:10.1111/j.1365-313X.2005.02612.x] [PMID]
20. Truman W M, Bennett M H, Trumbull C G, Grant M R (2010) Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. Plant Physiology 152:1562-1573. [DOI:10.1104/pp.109.152173] [PMID] [PMCID]
21. Warmington R, Clarkson J P (2016) Volatiles from biofumigant plants has a direct effect on carpogenic germination of sclerotia and mycelial growth of Sclerotinia sclerotiorum. Plant and Soil 401:213-229. [DOI:10.1007/s11104-015-2742-8]
22. Williams B, Kabbage M, Kim H J, Britt R, Dickman M B (2011) Tipping the balance sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulation of the host redox environment. PLoS Pathogens e1002107 [DOI:10.1371/journal.ppat.1002107] [PMID] [PMCID]
23. Wittstock U, Halkier B A (2002) Glucosinolate research in the Arabidopsis era. Trends in Plant Science 7:263-270. [DOI:10.1016/S1360-1385(02)02273-2]
24. Xu L, Li G, Jiang D, Chen W (2018) Sclerotinia sclerotiorum: an evaluation of virulence theories. Annual Review of Phytopathology 56:311-338. [DOI:10.1146/annurev-phyto-080417-050052] [PMID]
25. Yoruk R, Marshall M R (2003) A survey on the potential mode of inhibition for oxalic acid on polyphenol oxidase. Journal of Food Science 68:2479-2485. [DOI:10.1111/j.1365-2621.2003.tb07049.x]
26. Szűcs Z, Plaszkó T, Cziáky Z, Kiss-Szikszai A, Emri T, Bertóti R, Gonda S (2018). Endophytic fungi from the roots of horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate-myrosinase-isothiocyanate system. BMC Plant Biology 18:85. [DOI:10.1186/s12870-018-1295-4] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 CC BY-NC 4.0 | University of Yasouj Journals System Plant Pathology Science

Designed & Developed by : Yektaweb