Volume 6, Issue 2 (9-2017)                   pps 2017, 6(2): 24-32 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholamnezhad J. Plants Defense Mechanisms Against Pathogens. pps. 2017; 6 (2) :24-32
URL: http://yujs.yu.ac.ir/pps/article-1-169-en.html
Ardakan University, Ardakan, Iran , jgholamnezhad@ardakan.ac.ir
Abstract:   (6738 Views)
Gholamnejad  J. 2017. Plants defense mechanisms against pathogens. Plant Pathology Science 6(2):24-32.

Plants have many defense mechanisms against pathogens that can be stimulated and activated by some microorganisms or chemicals. There are five types of induced resistance in plants that are included: localized acquired resistance, systemic acquired resistance, systemic gene silencing, induced systemic resistance, and systemic wounding response. Systemic acquired resistance is the most important type of induced resistance in plants that result in continuous and prolonged protection from infection against a wide range of pathogens. Formation of pathogenesis related proteins, alteration of cell wall with sedimentation and binding of polysaccharides, proteins, glycol-proteins, phenols, phytotoxins, and ligninification are the stages of occurrence of this type of resistance in plants.
Full-Text [PDF 667 kb]   (2873 Downloads)    
Type of Study: Research | Subject: Special

References
1. Brandazza A., Angeli S., Tegoni M., Cambillau C. and Pelosi P. 2004. Plant stress proteins of the thaumatin-like family discovered in animals. FEBS Letters 572:3-7. 3. Dempsey D. M. A., Silva H. and Klessig D. F. 1998. Engineering Disease and Pest Resistance in Plants. Trends Microbiology 6:54-61. https://doi.org/10.1016/S0966-842X(97)01186-4 [DOI:10.1016/j.febslet.2004.07.003]
2. Farahbakhsh F. and Massah A. 2015. Genetic of resistance to plant disease. Plant Pathology Science 4:64-74. 5. Fierens E., Rombouts S., Gebruers K., Goesaert H., Brijs K., Beaugrand J., Volckaert G., Van Campenhout S., Proost P., Courtin C. M. and Delcour J. A. 2007. TLX1, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochemical Journal 403:583-591. 6. Gholamnejad J., Etebarian H. R., Roustaee A., Sahebani N. A. 2009. Biological control of apples blue mold by isolates of Saccharomyces cerevisiae. Journal of Plant Protection Research 49:270275. https://doi.org/10.2478/v10045-009-0042-0 [DOI:10.1042/BJ20061291]
3. Gholamnejad J., Etebarian H. R. and Sahebani N. 2010. Biological control of apple blue mold with Candida membranifaciens and Rhodotorula mucilaginosa. African Journal of Food Science 4:001-007.
4. Giberti S., Bertea C. M., Narayana R., Maffei M. E. and Forlani G. 2012. Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae. Journal of Plant Physiology 169:249–254. [DOI:10.1016/j.jplph.2011.10.008]
5. Gong M., Li Y., Dai X., Tian M. and Li Z. 2001. Involvment of calcium and calmodulin in the acquisition of HS inuced thermo tolerance in maize seeding. Journal of Plant Physiology 150:615-621. 10. Hong T. Y. and Meng M. 2004. Biochemical characterization and antifungal activity of an endo-1,3-ß-glucanase of Paenibacillus sp. isolated from garden soil. Applied Microbiology and Biotechnology 61:472-478. https://doi.org/10.1007/s00253-003-1249-z [DOI:10.1016/S0176-1617(97)80328-8]
6. Jafary H., Albertazzi G., Marcel T. C. and Niks R.E. 2008. High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327-2339. 12. Kim Y. H., Kim C.Y., Song W. K., Park D. S., Kwon S. Y., Lee H. S., Bang J. W. and Kwak S. S. 2008. Overexpression of sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867-881. https://doi.org/10.1007/s00425-007-0663-3 [DOI:10.1534/genetics.107.077552]
7. Lange B. M., Lapierre C., Sandermann H Jr. 1995. Elicitor-induced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiology 108:1277-1287. [DOI:10.1104/pp.108.3.1277]
8. Liu Q. and Xue Q. 2006. Computational identification of novel PR-1-type genes in Oryza sativa. Journal of Genetics 85:193-198. 15. Mandal S. 2010. Induction of phenolics, lignin and key defense enzymes in eggplant (Solanum melongena L.) roots in response to elicitors. African Journal of Biotechnology 9:8038–8047. https://doi.org/10.5897/AJB10.984 [DOI:10.1007/BF02935330]
9. Marjamaa K., Kukkola E. M. and Fagerstedt K. V. 2009. The role of xylem class III peroxidases in lignifi cation. Journal of Experimental Botany 60:367-376. 17. Mohr P. and Cahill D. M. 2001. Relative roles of glyceollin, lignin and the hypersensitive response and the influence of ABA in compatible and incompatible interactions of soybeans with Phytophthora sojae. Physiological and Molecular Plant Pathology 58:31–41. https://doi.org/10.1006/pmpp.2000.0306 18. Mukherjee A. K., Carp M. J., Zuchman R., Ziv T., Horwitz B. A. and Gepstein S. 2010. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. Journal of Proteomics 73:709-720. https://doi.org/10.1016/j.jprot.2009.10.005 19. Niderman T., Genetet I., Buryere T. and Gees R. 1995. Pathogenesis-related PR-1 proteins are antifungal. isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology 108:17–27. https://doi.org/10.1104/pp.108.1.17 [DOI:10.1093/jxb/ern278]
10. Niks R. E., Parlevliet, J. E., Lindhout P. and Y. Bai. 2011. Breeding crops with resistance to disease and pests. Wageningen Academic Press, Wageningen, The Netherlands, 202. [DOI:10.3920/978-90-8686-171-2]
11. Passardi F., Tognolli M., de Meyer M., Penel C. and Dunand C. 2006. Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta 223:965-974. [DOI:10.1007/s00425-005-0153-4]
12. Rengel D., Graham R. and Pedler J. 1994. Time-course of biosynthesis of phenolics and lignin in root of wheat genotypes differing in manganese efficiency and resistance to take-all fungus. Annals of Botany 74:471-477. [DOI:10.1006/anbo.1994.1143]
13. Saikia R., Singh B. P., Kumar R. and Arora D. K. 2005. Detection of Pathogenesis-related Proteins– Chitinase and â-1,3-Glucanase in Induced Chickpea: Current Science 89:659-663.
14. Senthil-Kumar M., Mysore K. S. 2013. Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annual Review Phytopathology 51:407-27. [DOI:10.1146/annurev-phyto-082712-102319]
15. Shatters R. G., Boykin L. M., Lapointe S. L., Hunter W. B. and Weathersbee A. A. 2006. Phylogenetic and structural relationships of the PR5 gene family reveal an ancient multigene family conserved in plants and select animal taxa. Journal of Molecular Evolution 63:12-29. [DOI:10.1007/s00239-005-0053-z]
16. Ten E., Ling C., Wang Y., Srivastava A., Dempere L. A. and Vermerris W. 2014. Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules 13:327-338. [DOI:10.1021/bm401555p]
17. Theis N. and Lerdau M. 2003. The evolution of function in plant secondary metabolites. International Journal of Plant Science 164:93–102. [DOI:10.1086/374190]
18. Truman W., de Zabala M. T. and Grant M. 2006. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defense responses during pathogenesis and resistance. The Plant Journal 46:14–33. [DOI:10.1111/j.1365-313X.2006.02672.x]
19. Tuzun S. and Bant, E. 2006. The possible role of PR proteins in multigenic and induced systemic resistance. In Multigenic and induced systemic resistance in plants. 112-142. Springer US. 34. Vance C. P., Kirk T. K. and Sherwood R. T. 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18:259-288. https://doi.org/10.1146/annurev.py.18.090180.001355 35. Wang X., Tang C., Deng L., Cai G., Liu X., Han Q., Buchenauer H., Wei G., Han D., Huang L. and Kang Z. 2010. Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiologia Plantarum 139:27-38. https://doi.org/10.1111/j.1399-3054.2009.01338.x [DOI:10.1007/0-387-23266-4_6]
20. Yang Q. and Gong Z. 2002. Purification and characterization of an ethylene-induced antifungal protein from leaves of guilder rose (Hydrangea macrophylla). Protein Expression and Purification, 24:76-82. [DOI:10.1006/prep.2001.1551]
21. Zamani A., Sturrock R. N., Ekramoddoullah A. K. M., Liu J. J. and Yu X. 2004. Gene cloning and tissue expression analysis of a PR-5 thaumatin-like protein in Phellinus weirii infected douglas-fir. Biochemistry and Cell Biology 94:1235-1243.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 CC BY-NC 4.0 | University of Yasouj Journals System Plant Pathology Science

Designed & Developed by : Yektaweb