1. Agbangba, C. E., Aide, E. S., Honfo, H., & Kakai, R. G. (2024). On the use of post-hoc tests in environmental and biological sciences: A critical review. Heliyon, 10(3), e25312. [
DOI:10.1016/j.heliyon.2024.e25312] [
PMID] [
]
2. Alimagham, S. M., Ghaderi-Far, F., & Rabbani, M. R. (2013). Germination data analysis by using the four-parameter Hill model. Seed Research, 3(2), 86-94. [In Persian]
3. Andersen, R. (2009). Nonparametric methods for modeling nonlinearity in regression analysis. Annual Review of Sociology, 35(1), 67-85. [
DOI:10.1146/annurev.soc.34.040507.134631]
4. Azimmohseni, M., Ghaderi-Far, F., Khalafi, M., Sadeghipour, H. R., & Ghezel, M. (2022). Comparison of time to the event and nonlinear regression models in the analysis of germination data. Iranian Journal of Seed Research, 9(1), 75-92. [In Persian] [
DOI:10.52547/yujs.9.1.75]
5. Colbach, N., & Durr, C. (2003). Effects of seed production and storage conditions on black grass (Alopecurus myosuroides) germination and shoot elongation. Weed Science, 51(5), 708-718. [
DOI:10.1614/P2002-051]
6. Colin, N., Habit, E., Manosalva, A., Maceda-Veiga, A., & Górski, K. (2022). Taxonomic and functional responses of species-poor riverine fish assemblages to the interplay of human-induced stressors. Water, 14(3), 355. [
DOI:10.3390/w14030355]
7. Cuevas, A., Febrero, M., & Fraiman, R. (2010). An ANOVA test for functional data. Computational Statistics & Data Analysis, 47(1), 111-122. [
DOI:10.1016/j.csda.2003.10.021]
8. Delaigle, A., & Hall, P. (2013). Classification using censored functional data. Journal of the American Statistical Association, 108(504), 1269-1283. [
DOI:10.1080/01621459.2013.824893]
9. Frois Caldeira, J., Gupta, R., Suleman, M. T., & Torrent, H. S. (2021). Forecasting the term structure of interest rates of the BRICS: Evidence from a nonparametric functional data analysis. Emerging Markets Finance and Trade, 57(15), 4312-4329. [
DOI:10.1080/1540496X.2020.1808458]
10. Gan, Y., Stobbe, E. H., & Njue, C. (1996). Evaluation of selected nonlinear regression models in quantifying seedling emergence rate of spring wheat. Crop Science, 36(1), 165-168. [
DOI:10.2135/cropsci1996.0011183X003600010030x]
11. Gertheiss, J., Rügamer, D., Liew, B. X., & Greven, S. (2024). Functional data analysis: An introduction and recent developments. Biometrical Journal, 66(7), 353-371. [
DOI:10.1002/bimj.202300363] [
PMID]
12. Ghaderi-Far, F., & Gorzin, M. (2019). Applied research in seed technology. Gorgan University of Agricultural Science and Natural Resources. [In Persian]
13. Ghaderi-Far, F., Azimmohseni, M., & Bagheri, H. (2024). Evaluation of the generalized linear model to the germination percentage data and its comparison with the square root transformation. Iranian Journal of Seed Research, 10(2), 37-48. [In Persian] [
DOI:10.61186/yujs.10.2.37]
14. Gianinetti, A. (2020). Basic features of the analysis of germination data with generalized linear mixed models. Data, 5(1), 6. [
DOI:10.3390/data5010006]
15. Gonzalez‐Andujar, J. L., Francisco‐Fernandez, M., Cao, R., Reyes, M., Urbano, J. M., Forcella, F., & Bastida, F. (2016). A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence. Weed Research, 56(5), 367-376. [
DOI:10.1111/wre.12216]
16. Górecki, T., & Smaga, Ł. (2015). A comparison of tests for the one-way ANOVA problem for functional data. Computational Statistics, 30(4), 987-1010. [
DOI:10.1007/s00180-015-0555-0]
17. Haj Seyedhadi, M. R., & Gonzalez-Andujar, J. L. (2009). Comparison of fitting weed seedling emergence models with nonlinear regression and genetic algorithm. Computers and Electronics in Agriculture, 65(1), 19-25. [
DOI:10.1016/j.compag.2008.07.006]
18. Joosen, R. V. L., Kodde, J., Willems, L. A. J., Ligterink, W., Van der Plas, H. W., & Hilhorst, H. W. M. (2010). Germinator: A software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. The Plant Journal, 62(1), 148-159. [
DOI:10.1111/j.1365-313X.2010.04136.x] [
PMID]
19. Khamadi, N., Nabipor, M., Roshanfekr, H., & Rahnama, A. (2016). Effect of sowing date and seed priming on emergence and yield and yield components of three bread wheat cultivars (Triticum aestivum L.). Applied Field Crops Research, 29(1), 119-125. [In Persian] [
DOI:10.22092/aj.2016.109570]
20. Kneip, A., & Liebl, D. (2020). On the optimal reconstruction of partially observed functional data. The Annals of Statistics, 48(3), 1692-1717. [
DOI:10.1214/19-AOS1856]
21. Leng, X., & Müller, H. G. (2006). Classification using functional data analysis for temporal gene expression data. Bioinformatics, 22(1), 68-76. [
DOI:10.1093/bioinformatics/bti742] [
PMID]
22. Loddo, D., Ghaderi-Far, F., Rastegar, Z., & Masin, R. (2018). Base temperatures for germination of selected weed species in Iran. Plant Protection Science, 54(1), 60-66. [
DOI:10.17221/158/2016-PPS]
23. Lu, M., Hua, J., Yu, Z., & Xu, Y. (2024). Towards transient connectivity of river networks during rainfall events: Insight from hydrological observation and functional data analysis. Journal of Hydrology, 637, 131146. [
DOI:10.1016/j.jhydrol.2024.131146]
24. Mamani, G. Q., Duarte, M. L., Almeida, L. S. D., & Martins Filho, S. (2024). Non-parametric survival analysis in seed germination of forest species. Journal of Seed Science, 46, e202446036. [
DOI:10.1590/2317-1545v46288345]
25. Matsui, H., & Mochida, K. (2024). Functional data analysis-based yield modeling in year-round crop cultivation. Horticulture Research, 11(7), uhae144. [
DOI:10.1093/hr/uhae144] [
PMID] [
]
26. Mrkvicka, T., Myllymäki, M., Jilik, M., & Hahn, U. (2020). A one-way ANOVA test for functional data with graphical interpretation. Kybernetika, 56(3), 432-458. [
DOI:10.14736/kyb-2020-3-0432]
27. Porali, F., Ghaderi-Far, F., Soltani, A., & Palevani, M. H. (2019). Comparison of different models for determining time up to 50% maximum germination: A case study of cottonseeds (Gossypium hirsutum). Iranian Journal of Seed Research, 5(2), 1-13. [In Persian] [
DOI:10.29252/yujs.5.2.1]
28. Ramsay, J. O., & Silverman, B. W. (2005). Functional linear models for functional responses. In: Functional Data Analysis. Springer Series in Statistics. Springer, New York, NY. [
DOI:10.1007/0-387-22751-2_16]
29. Romano, A., & Stevanato, P. (2020). Germination data analysis by time-to-event approaches. Plants, 9(5), 617. [
DOI:10.3390/plants9050617] [
PMID] [
]
30. Samieadel, S., Eshghizadeh, H. R., Zahedi, M., & Majidi, M. M. (2024). The interaction of planting date and irrigation regime effects on the yield and water use efficiency of Milk Thistle (Silybum marianum) ecotypes. Iranian Journal of Field Crop Science, 55(1), 105-121. [In Persian] [
DOI:10.22059/ijfcs.2023.361558.655015]
31. Smaga, Ł. (2020). A note on repeated measures analysis for functional data. AStA Advances in Statistical Analysis, 104(1), 117-139. [
DOI:10.1007/s10182-019-00352-6]
32. Talská, R., Machalová, J., Smýkal, P., & Hron, K. (2020). A comparison of seed germination coefficients using functional regression. Applications in Plant Sciences, 8(8), e11366. [
DOI:10.1002/aps3.11366] [
PMID] [
]
33. Tjørve, K. M. C., & Tjørve, E. (2017). A proposed family of Unified models for sigmoidal growth. Ecological Modeling, 359, 117-127. [
DOI:10.1016/j.ecolmodel.2017.05.008]