1. Abbasi Khalaki, M., Moameri, M., Asgari Lajayer, B., & Astatkie, T. (2021). Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regulation, 93(1), 13-28. [
DOI:10.1007/s10725-020-00670-9]
2. Abdul-Baki, A. A., & Anderson, J. D. (1973). Relationship between decarboxylation of glutamic acid and vigor in soybean seed. Crop Science, 13(2), 227-232. [
DOI:10.2135/cropsci1973.0011183X001300020023x]
3. Allen, P.S., & Meyer, S.E. (1998). Ecological aspects of seed dormancy loss. Seed Science Research, 8(2), 183-192. [
DOI:10.1017/S0960258500004098]
4. Bolandi Amoghin, M., Sheikhzadeh, P., Khomary, S., & Zare, N. (2020). Comparison the effects of different of seed priming techniques on improving germination and antioxidant enzymes activity in borage seedlings. Iranian Journal of Seed Sciences and Research, 7(3), 279-294. [In Persian]
5. Burman, U., Saini, M., & Kumar, P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological and Environmental Chemistry, 95(4), 605-612. [
DOI:10.1080/02772248.2013.803796]
6. Das, G., & Dutta, P. (2022). Effect of nanopriming with zinc oxide and silver nanoparticles on storage of chickpea seeds and management of wilt disease. Journal of Agricultural Science and Technology, 24(1), 213-226.
7. Donia, D. T., & Carbone, M. (2023). Seed priming with zinc oxide nanoparticles to enhance crop tolerance to environmental stresses. International Journal of Molecular Sciences, 24(24), 17612. [
DOI:10.3390/ijms242417612] [
PMID] [
]
8. Ellis, R. H., & Roberts, E. H. (1981). The quantification of aging and survival in orthodox seeds. Seed Science and Technology, 9, 373-409.
9. El-Shazoly, R. M., Othman, A. A., Zaheer, M. S., Al-Hossainy, A. F., & Abdel-Wahab, D. A. (2025). Zinc oxide seed priming enhances drought tolerance in wheat seedlings by improving antioxidant activity and osmoprotection. Scientific Reports, 15(1), 3863. [
DOI:10.1038/s41598-025-86824-z] [
PMID] [
]
10. El-Shazoly, R. M., Othman, A. A., Zaheer, M. S., Al-Hossainy, A. F., & Abdel-Wahab, D. A. (2025). Zinc oxide seed priming enhances drought tolerance in wheat seedlings by improving antioxidant activity and osmoprotection. Scientific Reports, 15(1), 3863. [
DOI:10.1038/s41598-025-86824-z] [
PMID] [
]
11. Fazeli-Nasab, B., Vessal, S., Bagheri, A., & Malekzadeh-Shafaroudi, S. (2025). Evaluation of drought-tolerant chickpea genotypes (Cicer arietinum L.) using morphophysiological and phytochemical traits. Frontiers in Plant Science, 16, 1529177. [
DOI:10.3389/fpls.2025.1529177] [
PMID] [
]
12. Food and Agriculture Organization (FAO) (2023). https://www.fao.org/statistics/en#
13. Ghorbani, R., Movafeghi, A., Ganjeali, A., & Nabati, J. (2022). Investigating the germination characteristics of Chickpea (Cicer arietinum) in response to titanium dioxide nanoparticles priming and drought stress. Iranian Journal of Seed Research, 9(1), 189-202. [
DOI:10.52547/yujs.9.1.189]
14. International Seed Testing Association. (2016). Handbook for seedling evaluation.
15. Ishfaq, A., Haidri, I., Shafqat, U., Khan, I., Iqbal, M., Mahmood, F., & Hassan, M. U. (2025). Impact of biogenic zinc oxide nanoparticles on physiological and biochemical attributes of pea (Pisum sativum L.) under drought stress. Physiology and Molecular Biology of Plants, 31, 1-16. [
DOI:10.1007/s12298-024-01537-3] [
PMID] [
]
16. Jha, U. C., Nayyar, H., Thudi, M., Beena, R., Vara Prasad, P. V., & Siddique, K. H. (2024). Unlocking the nutritional potential of chickpea: Strategies for biofortification and enhanced multinutrient quality. Frontiers in Plant Science, 15, 1391496. [
DOI:10.3389/fpls.2024.1391496] [
PMID] [
]
17. Karalija, E., Vergata, C., Basso, M. F., Negussu, M., Zaccai, M., Fatima, M., & Martinelli, F. (2022). Chickpeas' tolerance of drought and heat: Current knowledge and next steps. Agronomy, 12(10), 2248. [
DOI:10.3390/agronomy12102248]
18. Kaushal, K., Rajani, K., Kumar, R. R., Ranjan, T., Kumar, A., Ahmad, M. F., Kumar, V., Kumar, V., & Kumar, A. (2024). Physio-biochemical responses and crop performance analysis in chickpea upon botanical priming. Scientific Reports, 14(1), 13186. [
DOI:10.1038/s41598-024-59878-8] [
PMID] [
]
19. Khan, A. A., Wang, Y. F., Akbar, R., & Alhoqail, W. A. (2025). Mechanistic insights and future perspectives of drought stress management in staple crops. Frontiers in Plant Science, 16, 1547452. [
DOI:10.3389/fpls.2025.1547452] [
PMID] [
]
20. Kumar, P., Singh, R., Sharma, S., & Kaur, J. (2022). Impact of drought stress on chickpea yield and strategies for mitigation. Journal of Environmental Science and Health, Part B, 57(1), 1-13.
21. Maguire, J. D. (1962). Speed of germination: Aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177. [
DOI:10.2135/cropsci1962.0011183X000200020033x]
22. Mahmood, A., Kanwal, H., Kausar, A., Ilyas, A., Akhter, N., & Khalid, H. (2019). Seed priming with zinc modulates growth, pigments, and yield of chickpea (Cicer arietinum L.) under water deficit conditions. Applied Ecology and Environmental Research, 17(1), 147-160. [
DOI:10.15666/aeer/1701_147160]
23. Mazhar, W. M., Ishtiaq, M., Hussain, I., Parveen, A., Hayat Bhatti, K., Azeem, M., Thind, S., Ajaib, M., Maqbool, M., Sardar, T., & Nasir, N. (2022). Seed nano-priming with Zinc Oxide nanoparticles in rice mitigates drought and enhances agronomic profile. PLOS ONE, 17(3), e0264967. [
DOI:10.1371/journal.pone.0264967] [
PMID] [
]
24. Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916. [
DOI:10.1104/pp.51.5.914] [
PMID] [
]
25. Mouradi, M., Farissi, M., Khadraji, A., Bouizgaren, A., Qaddoury, A., & Ghoulam, C. (2023). Seed priming and nano priming techniques as tools to alleviate osmotic stress in legumes. In Biosaline agriculture as a climate change adaptation for food security (pp. 143-164). Springer. [
DOI:10.1007/978-3-031-24279-3_7]
26. Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., Nile, A., Sun, M., Venkidasamy, B., Xiao, J., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 254. [
DOI:10.1186/s12951-022-01423-8] [
PMID] [
]
27. Peters, W. S., Jensen, K. H., Stone, H. A., & Knoblauch, M. (2021). Plasmodesmata and the problems with size: Interpreting the confusion. Journal of Plant Physiology, 257, 153341. [
DOI:10.1016/j.jplph.2020.153341] [
PMID]
28. Safshekan, S., Pourakbar, L., & Rahmani, F. (2025). The effect of Zn NPs on some growth, biochemical and anatomical factors of chickpea plant stem under UVB irradiation. Plant Nano Biology, 8, 100154. [
DOI:10.1016/j.plana.2025.100154]
29. Saha, D., Senthilkumar, T., Sharma, S., Singh, C. B., & Manickavasagan, A. (2022). Application of near-infrared hyperspectral imaging coupled with chemometrics for rapid and non-destructive prediction of protein content in single chickpea seed. Journal of Food Composition and Analysis, 115, 104938. [
DOI:10.1016/j.jfca.2022.104938]
30. Scott, S. J., Jones, R. A., & Williams, W. A. (1984). Review of data analysis methods for seed germination. Crop Science, 24(6), 1192-1199. [
DOI:10.2135/cropsci1984.0011183X002400060043x]
31. Tamagno, S., Sadras, V. O., Ortez, O. A., & Ciampitti, I. A. (2020). Allometric analysis reveals enhanced reproductive allocation in historical set of soybean varieties. Field Crops Research, 248, 107717. [
DOI:10.1016/j.fcr.2020.107717]