(پاییز و زمستان)                   برگشت به فهرست مقالات | برگشت به فهرست نسخه ها

XML English Abstract Print


دانشگاه محقق اردبیلی ، t.saadat2020@gmail.com
چکیده:   (663 مشاهده)

چکیده مبسوط

مقدمه: انتظار می‌رود جمعیت جهان تا سال 2050 به سرعت افزایش یابد، به همین دلیل، تصور می‌شود که زمین‌های موجود برای رشد غلات جهت تامین نیازهای غذایی فزاینده در آینده ناکافی باشند. کاهش اراضی کشاورزی در نتیجه افزایش عوامل تنش زیستی و غیرزیستی از جمله موانع مهم کشاورزی است. گندم یک گیاه علفی یکساله به عنوان یک ماده غذایی اساسی و راهبردی هم در ایران و هم در جهان استفاده می شود. شوری یکی از مهم‌ترین تنش‌های غیرزیستی است که امنیت غذایی را در جهان با تأثیر بر تولیدات کشاورزی، به‌ویژه در مناطق خشک و مناطق نیمه‌خشک جهان تهدید می‌کند. پیش‌تیمار بذر تکنیکی برای به حداقل رساندن زمان سبز شدن، تضمین جوانه‌زنی مداوم و بهبود عملکرد محصول است، پرایمینگ یک تیمار قبل از کاشت است که منجر به شرایط فیزیولوژیکی می‌شود که جوانه‌زدن بذر را بهبود می‌بخشد. این پژوهش با هدف بررسی تأثیر پرایمینگ بذر با اسید سالیسیلیک روی جوانه‌زنی و صفات بیوشیمیایی گیاهچه گندم تحت تنش شوری اجرا گردید.

مواد و روش‌ها: آزمایش به صورت فاکتوریل در قالب طرح کاملا تصادفی با 3 تکرار در آزمایشگاه دانشکده کشاورزی دانشگاه محقق اردبیلی در سال 1403  انجام شد. تیمارهای آزمایشی شامل چهار سطح شوری (صفر، 50، 100 و 200 میلی‌مولار کلریدسدیم) و چهار سطح اسیدسالیسیلیک (صفر، 1/0، 5/0 و 1 میلی‌مولار) بود.

یافته‌ها: نتایج نشان داد که تنش شوری موجب کاهش درصد جوانه‌زنی و افزایش مقدار پرولین و محتوای قندهای محلول گردید، ولی پرایمینگ بذر با هیدرو، اسید سالیسیلیک 1/0 و 5/0 میلی‌مولار به‌ویژه اسید سالیسیلیک یک میلی‌مولار این صفات را بهبود بخشید. مقدار پرولین و محتوای قندهای محلول در پرایمینگ با اسید سالیسیلیک یک میلی‌مولار به ترتیب در حدود 22 و 43 درصد نسبت به شاهد (آب مقطر) بیشتر بود. فعالیت آنزیم کاتالاز در تیمار با اسید سالیسیلیک یک میلی‌مولار و شوری 200 میلی‌مولار نسبت به شاهد در حدود 61 درصد افزایش نشان داد. هم‌چنین، بیش‌ترین فعالیت آنزیم آلفاآمیلاز (400/4 میلی‌گرم بر گرم وزن تر بر دقیقه) در تیمار با اسید سالیسیلیک یک میلی‌مولار و بدون شوری به‌دست آمد.

 نتیجه‌گیری: نتایج این تحقیق نشان داد که پرایمینگ بذر با هیدرو (آب مقطر)، سطوح مختلف اسید سالیسیلیک به‌ویژه اسید سالیسیلیک یک میلی‌مولار با تحریک آنزیم‌های آنتی‌اکسیدانت و خنثی‌سازی رادیکال‌های آزاد می‌تواند به ‌عنوان بهبوددهنده رشد و کاهنده اثرات نامطلوب شوری در گیاه گندم مطرح شود.

 

جنبه‌های نوآوری:

  1. پرایمینگ بذر با استفاده از آب مقطر و اسید سالیسیلیک یک میلی‌مولار سبب بهبود درصد جوانه‌زنی بذر گندم تحت شرایط شوری گردید.
  2. پرایمینگ بذر با استفاده از آب مقطر و اسید سالیسیلیک یک میلی‌مولار فعالیت آنزیم‌های کاتالاز، آمیلاز، پرولین و قندهای محلول را افزایش داد.
  3. پرایمینگ با اسید سالیسیلیک یک میلی‌مولار تأثیر بهتری نسبت به سایر تیمارها بر شاخص‌های جوانه‌زنی و صفات بیوشیمیایی نشان داد.
     
نوع مطالعه: پژوهشي | موضوع مقاله: فیزیولوژی بذر
دریافت: 1403/3/18 | ویرایش نهایی: 1404/3/3 | پذیرش: 1403/8/5

فهرست منابع
1. Abdelaal, K., Alsubeie, M.S., Hafez, Y., Emeran, A., Moghanm, F., Okasha, S., Omara, R., Basahi, M.A., Darwish, D.B.E. and Ibrahim, M.F.M. 2022. Physiological and biochemical changes in vegetable and field crops under drought, salinity and weeds stresses: Control strategies and management. Agriculture, 12: 2084. [DOI:10.3390/agriculture12122084]
2. Abdi, N., Van Biljon, A., Steyn, C. and Labuschagne, M.T. 2022. Salicylic acid improves growth and physiological attributes and salt tolerance differentially in two bread wheat cultivars. Plants, 11: 1853. [DOI:10.3390/plants11141853] [PMID] []
3. Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121-126. [DOI:10.1016/S0076-6879(84)05016-3] [PMID]
4. Afrouz, M., Sayyed, R.Z., Fazeli-Nasab, B., Piri, R., Almalki, W.H. and Fitriatin, B.N. 2023. Seed bio-priming with beneficial Trichoderma harzianum alleviates cold stress in maize. PeerJ, 1-23. [DOI:10.7717/peerj.15644] [PMID] []
5. Albaji, Z. and Marashi, S.K. 2024. Effect of seed priming with hydrogen peroxide on germination indices and seedling growth of wheat (Triticum aestivum L.) under salt stress condition. Iranian Journal of Seed Science and Technology, 12(4): 57-67. [In Persian] [DOI:10.22092/ijsst.2023.361399.1476]
6. Alhammad, B.A., Ahmad, A., Seleiman, M.F. and Tola, E. 2023. Seed priming with nanoparticles and 24-epibrassinolide improved seed germination and enzymaticb performance of Zea mays L. in salt-stressed soil. Plants, 12: 690. [DOI:10.3390/plants12040690] [PMID] []
7. Bahrasemani, S., Seyedi, A., Fathi, S. H. and Jowkar, M. 2024. The seed priming using putrescine improves, germination indices and seedlings morphobiochemical responses of indigo (Indigofera tinctoria) under salinity stress. Journal of Medicinal Plants and By-products, 13(1): 179-188. [DOI:10.22034/jmpb.2023.128870]
8. Bates, L.S., Waldern, R.P. and Tear, I.D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207. [DOI:10.1007/BF00018060]
9. Danouche, M., El Ghachtouli, N., El Baouchi, A. and El Arroussi, H. 2020. Heavy metals phytoremediation using tolerant green microalgae: enzymatic and nonenzymatic antioxidant systems for the management of oxidative stress. Journal of Environmental Chemical Engineering, 8 (5): 104460. [DOI:10.1016/j.jece.2020.104460]
10. Debez, A., Ben Slimen, I.D., Bousselmi, S., Atia, A., Farhat, N., El Kahoui, S. and Abdelly. C. 2020. Comparative analysis of salt impact on sea barley from semi-arid habitats in Tunisia and cultivated barley with special emphasis on reserve mobilization and stress recovery aptitude. Plant Biosystems, 154: 544-552. [DOI:10.1080/11263504.2019.1651777]
11. Dkhil, B.B. and Denden, M. 2010. Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus L. (Moench.) Seeds. African Journal of Agricultural Research, 5: 1412-1418.
12. Duman, I. 2006. Effect of seed priming with PEG and K3PO4 on germination and seedling growth in lettuce. Pakistan Journal of Biological Sciences, 9(5): 923-928. [DOI:10.3923/pjbs.2006.923.928]
13. Ejaz, S., Fahad, S., Anjum, M.A., Nawaz, A., Naz, S., Hussain, S. and Ahmad, S. 2020. Role of osmolytes in the mechanisms of antioxidant defense of plants. Sustainable Agriculture Reviews, 39: 95-117. [DOI:10.1007/978-3-030-38881-2_4]
14. El-Hawary, M.M., Hashem, O.S.M. and Hasanuzzaman, M. 2023. Seed priming and foliar application with ascorbic acid and salicylic acid mitigate salt stress in wheat. Agronomy, 13: 493. [DOI:10.3390/agronomy13020493]
15. Farhoudi, R. and Khodarahmpour, Z. 2017. Study of germination, seedling growth and antioxidant enzymes activity of chickpea cultivars under salt stress. Plant Process and Function, 6(21): 91-102. [In Persian]
16. Fazeli-Nasab, B., Khajeh, H., Piri, R. and Moradian, Z. 2023. Effect of humic acid on germination characteristics of Lallemantia royleana and Cyamopsis tetragonoloba under salinity stress. Iranian Journal of Seed Research, 9(2): 51-62. [In Persian] [DOI:10.61186/yujs.9.2.51]
17. Galviz-Fajardo, Y.C., Bortolin, G.S., Deuner, S., Amarante, L.d., Reolon, F. and Moraes, D.M.D. 2020. Seed priming with salicylic acid potentiates water restriction-induced effects in tomato seed germination and early seedling growth. Journal of Seed Science, 42: e202042031. [DOI:10.1590/2317-1545v42234256]
18. Gholinezhad, E. 2014. The effects of salinity stress on related germination traits of wheat genotypes. Journal of Plant Research, 27(2): 276-287. [In Persian]
19. Ghosh, U.K., Islam, M.N., Siddiqui, M.N., Cao, X. and Khan. M.A.R. 2022. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Journal of Plant Biology, 24: 227-239. [DOI:10.1111/plb.13363] [PMID]
20. Go¨tz, F., Longnecker, K., Kido Soule, M.C, Becker, K.W., McNichol, J. and Kujawinski, E.B. 2018. Targeted metabolomics reveals proline as a major osmolyte in the chemolithoautotroph Sulfurimonas denitrificans. Microbiologyopen, 7: e00586. [DOI:10.1002/mbo3.586] [PMID] []
21. Guo, J., Du, M., Tian, H. and Wang, B. 2020. Exposure to high salinity during seed development markedly enhances seedling emergence and fitness of the progeny of the extreme halophyte Suaeda salsa. Frontiers in Plant Science, 11: 1291. [DOI:10.3389/fpls.2020.01291] [PMID] []
22. Hasanuzzaman, M., Parvin, K., Bardhan, K., Nahar, K., Anee, T.I. and Masud, A.A.C. 2021. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells, 10: 2537. [DOI:10.3390/cells10102537] [PMID] []
23. Hossen, M.S., Karim, M.F., Fujita, M., Bhuyan, M.H.M.B., Nahar, K. and Masud, A.A.C. 2022. Comparative physiology of Indica and Japonica rice under salinity and drought stress: an intrinsic study on osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification. Stresses, 2: 156-178. [DOI:10.3390/stresses2020012]
24. Jafari, L., Yadavi, A., Movahedi Dehnavi, M., Balouchi, H. and Maghsoudi, E. 2018. The effect of ascorbic acid and salicylic acid on some physiological characteristics of safflower under salinity stress. Plant Production Technology, 10: 69-80. [In Persian]
25. Jeong, M.J., Lim, D.S., Kim, S.O., Park, C., Leem, S.H. and Lee, H. 2022. Protection of oxidative stress-induced DNA damage and apoptosis by rosmarinic acid in Murine myoblast C2C12 cells. Biotechnology and Bioprocess Engineering, 27(2): 171-182. [DOI:10.1007/s12257-021-0248-1]
26. Kaur, H., Manna, M., Thakur, T., Gautam, V. and Salvi, P. 2021. Imperative role of sugar signaling and transport during drought stress responses in plants. Physiologia Plantarum, 171(4): 833-848. [DOI:10.1111/ppl.13364] [PMID]
27. Kochert, G. 1978. Carbohydrate determination by phenol-sulfuric acid method. In: Hellebust, A., Craige, J.S. (eds.), Physiological and Biochemical Methods. Cambridge University Press, London, pp. 95-97.
28. Kohli, S.K., Khanna, K., Bhardwaj, R., Abda Allaha, E.F., Ahmad, P. and Corpas, F.J. 2019. Assessment of subcellular ROS and NO metabolism in higher plants: Multifunctional signaling molecules. Antioxidants, 8(12): 641. [DOI:10.3390/antiox8120641] [PMID] []
29. Kovacik, J., Gruz, J., Backor, M., Strnad, M. and Repcak, M. J. 2009. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports, 28(1): 135-143. [DOI:10.1007/s00299-008-0627-5] [PMID]
30. Li, F., Li, T., Sun, C., Xia, J., Jiao, Y. and Xu, H. 2017. Selenium-doped carbon quantum dots for free-radical scavenging. Angewandte Chemie International Edition, 56: 9910-9914. [DOI:10.1002/anie.201705989] [PMID]
31. Mansoor, S., Wani, O.A., Lone, J.F., Manhas, S., Kour, N., Alam, P. and Ahmad, P. 2022. Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2): 225. [DOI:10.3390/antiox11020225] [PMID] []
32. Mehrabi Oladi, A.A., Omidi, M. and Fazli Nasab, B. 2018. Investigating the effects of salinity stress on seed germination, seedling growth and callus cultivation of rapeseed genotypes. Iranian Journal of Field Crop Science, 42(1): 81-90. [In Persian]
33. Moghaddam, H., Oveisi, M., Mehr, M.K., Bazrafshan, J., Naeimi, M.H., Kaleibar, B.P. and Müller-Schärer, H. 2023. Earlier sowing combined with nitrogen fertilization to adapt to climate change effects on yield of winter wheat in arid environments: Results from a field and modeling study. European Journal of Agronomy, 146: 1-13. [DOI:10.1016/j.eja.2023.126825]
34. Mohamed, A.B., El-Banna, M.F., Farouk, S. and Khafagy, M. A. 2019. The role of grain priming and its duration on wheat germination and seedling growth. Journal of Plant Production, 10(4): 343- 349. [DOI:10.21608/jpp.2019.36267]
35. Mohi-Ud-Din, M., Siddiqui, N., Rohman, M., Jagadish, S.K., Ahmed, J.U., Hassan, M.M., Hossain, A. and Islam, T. 2021. Physiological and biochemical dissection reveals a trade-off between antioxidant capacity and heat tolerance in bread wheat (Triticum aestivum L.). Antioxidants, 10: 351. [DOI:10.3390/antiox10030351] [PMID] []
36. Moradi, A. and Piri, R. 2018. Enhancement of salinity stress tolerance in Cumin (Cuminum cyminum L.) as affected by plant growth promoting rhizobactria during germination stage. Journal of Plant Process and Function, 6(22): 47-54. [In Persian]
37. Mousavi, S.E., Omidi, H., Saeedizadeh, A. and Aghighi Shahverdi, M. 2021. The effect of biological pretreatments on germination and physiological indices of pumpkin (Cucurbita pepo var. Styriaca) seedling under salt stress. Iranian Journal of Seed Research, 7(2): 33-53. [In Persian] [DOI:10.52547/yujs.7.2.33]
38. Mutlu, S., Atici, O. and Nalbantoglu, B. 2009. Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance.Biologiac Plantarum, 34: 334-338. [DOI:10.1007/s10535-009-0061-8]
39. Mwando, E., Han, Y., Angessa, T.T., Zhou, G., Hill, C.B., Zhang, X.Q. and Li, C. 2020. Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Frontiers in Plant Science, 11: 118. [DOI:10.3389/fpls.2020.00118] [PMID] []
40. Naseer, M.N., Rahman, F.U., Hussain, Z., Khan, I.A., Aslam, M.M., Aslam, A., Waheed, H., Khan, A.U. and Iqbal, S. 2022. Effect of salinity stress on germination, seedling growth, mineral uptake and chlorophyll contents of three cucurbitaceae species. Brazilian Archives of Biology and Technology, 65: 1-10. [DOI:10.1590/1678-4324-2022210213]
41. Noreen, S., Saleem, S., Iqbal, U., Mahmood, S., Akhter, S., Akbar, M.N., El-Sheikh, M. and Kaushik, P. 2024. Moringa olifera leaf extract increases physio-biochemical properties, growth and yield of Pisum sativum grown under salinity stress. Journal of King Saud University-Science, 36(2): 103056. [DOI:10.1016/j.jksus.2023.103056]
42. Omidi, H., Naghdi Badi, H.A. and Jafarzadeh, L. 2015. Seeds of medicinal plants and crops. Shahed University Press. 454 p. [In Persian]
43. Papan, P., Moezzi, A., Chorom, M., and Rahnama, A. 2022. Biochemical and physiological response of quinoa to application of different levels of nitrogen and salinity irrigation water. Environmental Stresses in Crop Sciences, 15: 501-515. [In Persian] [DOI:10.22077/escs.2021.3846.1923]
44. Piri, R., Moradi, A., Salehi, A. and Balouchi, H.R. 2021. Effect of seed biological pretreatments on germination and seedling growth of cumin (Cuminum cyminum L.) under drought stress. Iranian Journal of Seed Science and Technology, 9(4): 11-26. [In Persian] [DOI:10.22092/ijsst.2019.109182.1054]
45. Raza, A., Charagh, S., Najafi-Kakavand, S., Abbas, S., Shoaib, Y. and Anwar, S. 2023. Role of phytohormones in regulating cold stress tolerance: physiological and molecular approaches for developing cold-smart crop plants. Plant Stress, 8: 100152. [DOI:10.1016/j.stress.2023.100152]
46. Rhaman, M.S., Imran, S., Rauf, F., Khatun, M., Baskin, C.C., Murata, Y. and Hasanuzzaman, M. 2021. Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants, 10(1): 5772-5787. [DOI:10.3390/plants10010037] [PMID] []
47. Roshdy, A.E.D., Alebidi, A., Almutairi, K., Al-Obeed, R. and Elsabagh, A. 2021.The effect of salicylic acid on the performances of salt stressed strawberry plants, enzymes activity, and salt tolerance index. Agronomy, 11: 775. [DOI:10.3390/agronomy11040775]
48. Saadat, H. and Sedghi, M. 2021. Effect of priming and aging on physiological, biochemical traits seed common bean (Phaseolus vulgaris L.). Journal of Seed Research, 11(3): 75-89. [In Persian] [DOI:10.30495/jsr.2022.1945870.1228]
49. Saadat, H., Soltani, E. and Sedghi, M. 2023a. The effect of seed priming with chitosan on germination characteristics and activity of antioxidant enzymes in rice seedlings (Oryza Sativa L.) under salinity stress. Plant Process and Function, 12(54): 239-258. [In Persian]
50. Saadat, T., Sedghi, M., Seyed Sharifi, R. and Farzaneh, S. 2023b. Effect of chitosan on germination indices of common bean (Phaseolus vulgaris) (cv. Sedri) seeds under salt stress, Iranian Journal of Seed Research, 9(2): 151-162. [In Persian] [DOI:10.61186/yujs.9.2.151]
51. Sairam, R.K., Rao, K.V. and Srivastava, G.C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyteconcentration. Plant Science, 163: 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
52. Shabala, S. 2013. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112: 1209-1221. [DOI:10.1093/aob/mct205] [PMID] []
53. Shafi, A., Zahoor, I. and Mushtaq, U. 2019. Proline accumulation and oxidative stress: diverse roles and mechanism of tolerance and adaptation under salinity stress. Physiology and Molecular Biology of Plants, 8(30): 269-300. [DOI:10.1007/978-981-13-8805-7_13]
54. Sojoodi, P., Oveysi, M. and Ghooshchi. F. 2014. Effect of pretreatment salicylic acid on germination and seedling growth in sweet corn (Zea mays L.) under salt stress conditions. Iranian Journal of Dynamic Agriculture, 10(4): 305-316. [In Persian]
55. Tania, S.S., Rahaman, M., Rauf, F., Suborna, M.A., Kabir, M.H., Hoque, A. and Mohammad Saidur Rhaman, M.S. 2021. Seed priming with salicylic acid (SA) and hydrogen peroxide (H2O2) Improve germination and seedling growth of wheat (Triticum aestivum) under salt stress. Asian Journal of Research in Crop Science, 6(4): 60-69. [DOI:10.9734/ajrcs/2021/v6i430127]
56. Tarabih, M. and El-Eryan, E. 2020. Glycine betaine and proline with thinning technique for resistance abiotic stress of Cristalina cactus pear. Pakistan Journal of Biological Sciences, 23: 68-80. [DOI:10.3923/pjbs.2020.68.80] [PMID]
57. Teker Yıldız, M., Eda Günay, E. and Acar, O. 2024. Physiological and biochemical effects of thermo-priming on wheat (Triticum aestivum L.) under drought and heat stresses. Düzce University Journal of Science and Technology, 1: 375-389. [DOI:10.29130/dubited.1213671]
58. Van Zelm, E., Zhang, Y. and Testerink, C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71: 403-433. [DOI:10.1146/annurev-arplant-050718-100005] [PMID]
59. Waadt, R., Seller, C.A., Hsu, P.K., Takahashi, Y., Munemasa, S. and Schroeder, J.I. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology, 23: 680-694. [DOI:10.1038/s41580-022-00479-6] [PMID] []
60. Xia. F., Wang, X., Li, M and Mao, P. 2015. Mitochondrial structural and antioxidant system responses to aging in oat (Avena sativa L.) seeds with different moisture contents. Plant Physiology and Biochemistry, 94: 122-129. [DOI:10.1016/j.plaphy.2015.06.002] [PMID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهشهای بذر ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.