(بهار و تابستان)                   برگشت به فهرست مقالات | برگشت به فهرست نسخه ها

XML English Abstract Print


دانشگاه خلیج فارس ، hrnooryazdan@pgu.ac.ir
چکیده:   (1280 مشاهده)
چکیده مبسوط
مقدمه: وقوع تنش خشکی در کشت دیم گندم که در آن گیاه تنها متکی به آب باران است، می‌تواند اثر مخربی بر رشد گیاه داشته باشد. با توجه به طولانی بودن پروژه‌های به‌نژادی، شناسایی لاین‌های اصلاحی از نظر تحمل به تنش خشکی در مرحله جوانه‌زنی، می‌تواند به طور قابل توجهی به کاهش زمان و هزینه‌های برنامه‌های به نژادی گندم دیم برای توسعه ارقام مقاوم به خشکی منجر شود. شناسایی میزان تحمل لاین‌هایی که هنوز به مرحله آزاد‌سازی نرسیده‌اند از طریق شبیه‌سازی تنش خشکی در شرایط آزمایشگاهی، از جمله روش‌های نوآور برای کمک به انتخاب رقم متحمل به خشکی در مراحل نهایی است. از سوی دیگر مرحله جوانه‌زنی، اهمیت بسیاری در استقرار بوته‌ها دارد. این مرحله برای رشد و توسعه گیاه حیاتی است و در صورت وجود لاین‌های متحمل می‌تواند تأثیر قابل توجهی بر عملکرد گندم نان داشته باشد.
مواد و روش‌ها: این آزمایش به منظور بررسی خصوصیات جوانهزنی 11 لاین پیشرفته گندم نان دیم، در  چهار سطح پتانسیل اسمزی (2-، 4-،6- و 8- بار) بوجود آمده توسط پلیاتیلن گیلکول 6000 به همراه شاهد (در مجموع  پنج سطح) در شرایط آزمایشگاهی در دانشگاه خلیج فارس، به صورت فاکتوریل در قالب طرح پایه کاملاٌ تصادفی با سه تکرار انجام شد. در این آزمایش صفات شامل درصد جوانهزنی و سرعت جوانهزنی، سرعت رشد ریشهچه و ساقهچه، شاخص بنیه بذر (به دو روش)، طول ریشه‌چه و ساقه‌چه، طول گیاهچه، وزن خشک ریشه‌چه و ساقهچه و ضریب آلومتری، اندازهگیری شدند.
یافته‌ها: میانگین صفات، با افزایش سطح تنش، کاهش یافت. نتایج جدول تجزیه واریانس نشان داد که بین لاینها و سطوح تنش خشکی برهمکنش در سطح معنیدار یک درصد وجود داشت. بنابراین تجزیه برشی فیزیکی در هر سطح تنش برای مقایسه ارقام انجام شد. واکنش لاین‌ها از نظر صفات مختلف، در برابر سطوح مختلف پتانسیل اسمزی، از نوع برهمکنش ترتیبی بود. با افزایش سطح تنش خشکی، درصد و سرعت جوانه‌زنی، سرعت رشد ریشه‌چه و ساقه‌چه و طول گیاهچه کاهش یافت. در مجموع کل آزمایش، لاینهای شماره 3 و 4 دارای بالاترین درصد جوانهزنی (86/58) و سرعت جوانه‌زنی (60/3 بذر در روز)، سرعت رشد ریشه‌چه (85/0 سانتیمتر در روز) و ساقه‌چه (70/0 سانتیمتر در روز)، و طول ریشه‌چه (83/8 سانتیمتر) و گیاهچه (12/7 سانتی‌‌متر) بودند.
 نتیجه‌گیری: واکنش لاین‌ها از نظر صفات مختلف، در برابر سطوح مختلف پتانسیل اسمزی، متفاوت بود. بر اساس صفات بررسی شده، لاینهای 3 و 4 از نظر تحمل به تنش خشکی وضعیت بهتری داشتند. از این لاینها میتوان به عنوان منابع برتر در برابر شرایط خشکی در برنامههای بعدی بهنژادی استفاده کرد.

جنبه‌های نوآوری:
  1. ارزیابی و غربالگری لاینهای اصلاحی گندم از نظر تحمل به تنش خشکی با شبیهسازی شرایط در آزمایشگاه با مقایسه صفات مورفولوژیک در مراحل اولیه رشد گیاه، انجام شد.
  2. واکنش لاینها در سطوح مشابه تنش خشکی، غیر یکسان بود و تجزیه برشی فیزیکی بر اساس هر سطح تنش، برهمکنش ترتیبی بین سطوح لاین و تنش را نشان داد.
شماره‌ی مقاله: 12
     
نوع مطالعه: پژوهشي | موضوع مقاله: سایر موضوعات
دریافت: 1403/3/5 | ویرایش نهایی: 1403/8/27 | پذیرش: 1403/4/24

فهرست منابع
1. Abdi, H., Bihamta, A., Ebrahim, F. and Chogan, R. 2014. Investigation of drought stress levels caused by polyethylene glycol (PEG 6000) on seed rejuvenation components and its relationship with drought tolerance indices in promising cultivars and lines. Bread wheat (Triticum aestivum L). Iran Agricultural Research, 12(4): 582-596.
2. Abdul-Baki, A. and Anderson, J.D. 1973. Vigor determination in soybean seed by multiple criteria. Crop Science, 13(6): 630-633. [DOI:10.2135/cropsci1973.0011183X001300060013x]
3. Abido, W.A.E. and Zsombik, L. 2018. Effect of water stress on germination of some Hungarian wheat landraces varieties. Acta Ecologica Sinica, 38(6): 422-428. [DOI:10.1016/j.chnaes.2018.03.004]
4. Abro, A.A., Eisawi, K.A., Batyrbek, M., Sial, N.Y., Akhtar, M. and Memon, S.A. 2021. Identification of drought-tolerant wheat (Triticum aestivum L.) cultivars based on the associations of in-vitro and in-vivo predictors through polyethylene glycol (PEG 6000) mediated osmotic stress. Pakistan Journal of Biotechnology, 18(3-4): 69-80. [DOI:10.34016/pjbt.2022.19.1-2.69]
5. Ahmad, A., Aslam, Z., Javed, T., Hussain, S., Raza, A., Shabbir, R., Mora-Poblete, F., Saeed, T., Zulfiqar, F., Ali, M.M. and Nawaz, M. et al. 2022. Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance through agronomic and physiological response. Agronomy, 12(2): 287. [DOI:10.3390/agronomy12020287]
6. Ahmed, H., Zeng, Y., Yang, X., Anwaar, H.A., Mansha, M.Z., Hanif, C., Ikram, K., Ullah, A. and Alghanem, S. 2020. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi Journal of Biological Sciences, 27: 2116-2123. [DOI:10.1016/j.sjbs.2020.06.019] [PMID] []
7. Batool, M., El-Badri, A.M., Wang, Z., Mohamed, I.A., Yang, H., Ai, X., and Zhou, G. 2022. Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 12(3): 579. [DOI:10.3390/agronomy12030579]
8. Bewley, J.D. and Black, M. 2012. Physiology and biochemistry of seeds in relation to germination: volume 2: viability, dormancy, and environmental control. Springer Science & Business Media.
9. Bilal, M., Rashid, R., Rehman, S., Iqbal, F.,Ahmed, J., Abid, M., Ahmed, Z. and Hayat, A. 2015. Evaluation of wheat genotypes for drought tolerance. Journal of Green Physiology, Genetic Genome, 1: 11-21.
10. Bilgili, D., Mehmet, A. and Kazım, M. 2019. Effects of peg-induced drought stress on germination and seedling performance of bread wheat genotypes. Yuzuncu Yıl University Journal of Agricultural Sciences, 29(4): 765-771. [DOI:10.29133/yyutbd.595627]
11. Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Marè, C., Tondelli, A. and Stanca, A.M. 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research, 105(1-2): 1-14. [DOI:10.1016/j.fcr.2007.07.004]
12. Faisal, S., Mujtaba, S.M., Asma and Mahboob, W., 2019. Polyethylene Glycol mediated osmotic stress impacts on growth and biochemical aspects of wheat (Triticum aestivum L.). Journal of Crop Science and Biotechnology, 22: 213-223. [DOI:10.1007/s12892-018-0166-0]
13. Food and Agriculture Organization (FAO). 2022. FAOSTAT agriculture. Form http://fao.org/crop/statistics
14. Gall, H., Philippe, F., Domon, J.M., Gillet, F., Pelloux, J. and Rayon, C. 2015. Cell wall metabolism in response to abiotic stress. Plants, 4(1): 112-166. [DOI:10.3390/plants4010112] [PMID] []
15. Gampala, S., Singh, V.J., Chakraborti, S., Vishwajith, K. and Manjunath, G. 2015. Genotypic differences against poly ethylene glycol (PEG) simulated drought stress in rice. Green Farming, 6(1): pp.117-121.
16. Ganiyu, S.A., Popoola, A.R., Imonmion, J.E., Uzoemeka, I.P., and Ojo, K.O. 2021. Effect of three sterilizing agents on seed viability, seedling vigor and occurrence of seed-borne bacterial pathogens of two tomato cultivar. Nigerian Journal of Plant Protection, 35(1): 32-38.
17. Garavandi, M., Farshadfar, E., Kahrizi, D. 2010. Evaluation of drought tolerance in advanced bread wheat genotypes in field and laboratory condition. Journal of Seed and Plant Seedling, 2: 233-252. [In Persian with English Summary]
18. Gholinezhad, E. 2014. The Effects of Salinity Stress on Related germination traits of wheat genotypes. Journal of Plant Research (Iranian Journal of Biology), 27(2): 276-287. [In Persian with English Summary]
19. Ghosh, S., Shahed, M.A., and Robin, A. 2020. Polyethylene glycol induced osmotic stress affects germination and seedling establishment of wheat genotypes. Plant Breeding Biotechnology, 8: 174-185. [DOI:10.9787/PBB.2020.8.2.174]
20. Giraldo, P., Benavente, E., Manzano-Agugliaro, F. and Gimenez, E. 2019. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy, 9(7): 352. [DOI:10.3390/agronomy9070352]
21. Gupta, K. D. and Palma J. 2021. Plant Growth and Stress Physiology. Switzerland: Springer International Publishing. [DOI:10.1007/978-3-030-78420-1]
22. International Seed Testing Association (ISTA). 2023. International rules for seed testing. Rules. Seed Science and Technology, 13(2): 299-513.
23. Li, D., Batchelor, W.D., Zhang, D., Miao, H., Li, H., and Song, S. 2020. Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. PLOS One, 15(8): e0237536. [DOI:10.1371/journal.pone.0237536] [PMID] []
24. Lipiec, J., Doussan, C., Nosalewicz, A. and Kondracka, K. 2013. Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics, 27(4): 463-477. [DOI:10.2478/intag-2013-0017]
25. Loutfy, N., Hassanein, A.M., Inouhe, M., and Salem, J.M. 2022. Biological aspects and proline metabolism genes influenced by polyethylene glycol and salicylic acid in two wheat cultivars. Egyptian Journal of Botany, 62(3): 671-685. [DOI:10.21608/ejbo.2022.124280.1921]
26. Maguire, J. D. 1968. Seed dormancy, germination and seedling vigor of some Kentucky bluegrass (Poa pratensis L.) varieties as affected by environmental and endogenous factors. Dissertation. Oregon State Universty.
27. Mahpara, S., Zainab, A., Ullah, R., Kausar, S., Bilal, M., Latif, M.I., and Zuan, A. 2022. The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat (Triticum aestivum L.) genotypes. PLoS One, 17(2): e0262937. [DOI:10.1371/journal.pone.0262937] [PMID] []
28. Memon, S., Abro, A., Jakhro, M.I., Farid, A., Habib, M., Ahmed, M., Bhutto, L.A., Memon, S.A. and Farooq, M. 2023. Polyethylene glycol mediated osmotic stress impacts on growth and biochemical aspects of wheat under artificial osmotic stress condition. Journal of Innovative Sciences, 9(1): 44-50. [DOI:10.17582/journal.jis/2023/9.1.44.50]
29. Michel, B.E. and Kaufmann, M.R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5): 914-916. [DOI:10.1104/pp.51.5.914] [PMID] []
30. Mujtaba, S.M., Faisal, S., Khan, M.A., Mumtaz, S. and Khanzada, B., 2016. Physiological studies on six wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Agricultural Research & Technology, 1(2): 1-5. [DOI:10.19080/ARTOAJ.2016.01.555559]
31. Muscoloa, A., Sidaria, M., Anastasib, U., Santonocetoa, C., and Maggioc, A. 2014. Effect of PEG induced drought stress on seed germination of four lentil genotypes. Journal of Plant Interactions, 9: 354-363. [DOI:10.1080/17429145.2013.835880]
32. Noorka, I.R., Batool, A., Rauf, S., Teixeira da Silva, J. and Ashraf, E. 2013. Estimation of heterosis in wheat (Triticum aestivum L.) under contrasting water regimes. International Journal of Plant Breeding, 7: 55-60.
33. Othmani, A., Ayed, S., Chamekh, Z., Slama-Ayed, O., Teixeira Da Silva, J.A., Rezgui, M., Slim-Amara, H. and Younes, M.B. 2021. Screening of seedlings of durum wheat (Triticum durum Desf.) cultivars for tolerance to peg-induced drought stress. Pakistan Journal of Botany, 53(3): pp.823-832. [DOI:10.30848/PJB2021-3(5)]
34. Pramanik, S.K., Sikder, S. and Hasan, M.A., 2022. Polyethylene glycol mediated osmotic stress on germination, seedling traits and seed metabolic efficiency of wheat. Bangladesh Agronomy Journal, 25(2): 19-29. [DOI:10.3329/baj.v25i2.65926]
35. Qadir, S.A. 2018. Wheat grains germination and seedling growth performance under drought condition. Basrah Journal of Agricultural Sciences, 31(2), 44-52. [DOI:10.33762/bagrs.2018.160132]
36. Raza, S., Saleem, M., Khan, I., Jamil, M., Ijaz, M., Khan, M., 2012. Evaluating the drought stress tolerance efficiency of wheat (Triticum aestivum L.) cultivars. Russian Journal of Agriculture and Economic Sciences, 12 (12): 41-46. [DOI:10.18551/rjoas.2012-12.04]
37. Saed-Moucheshi, A., and Safari, H. 2023. Superoxide dismutase enzyme expression in root and shoot of triticale seedlings under drought stress conditions. Cereal Biotechnology and Biochemistry, 1: 581-595.
38. Sarto, M.V.M., Sarto, J.R.W., Rampim, L., Rosset, J.S., Bassegio, D., da Costa, P.F., and Inagaki, A.M. 2017. Wheat phenology and yield under drought: a review. Australian Journal of Crop Science, 11(8): 941-946. [DOI:10.21475/ajcs.17.11.08.pne351]
39. Schwalm, C.R., Anderegg, W.R.L., Michalak, A.M., Fisher, J.B., Biondi, F., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., and Wolf, A. 2017. Global patterns of drought recovery. Nature, 548: 202-205. [DOI:10.1038/nature23021] [PMID]
40. Sharma, K., Dhingra, M., Kaur, R., Singh, S., Kaur, A., Kaur, S., and Sharma, A. 2022. Evaluation of Triticum durum-Aegilops tauschii derived primary synthetics as potential sources of drought stress tolerance for wheat improvement. Cereal Research Communications: 50: 1205-1216. [DOI:10.1007/s42976-022-00265-2]
41. Sharma, V., Kumar, A., Chaudhary, A., Mishra, A., Rawat, S., Basavaraj, Y.B., Shami, V. and Kaushik, P. 2022. Response of wheat genotypes to drought stress stimulated by PEG. Stresses 2: 26-51 [DOI:10.3390/stresses2010003]
42. Statistical Yearbook of the Ministry of Agriculture for the Iranian year 2022. 95 pp.
43. Street, H.E, and Cockburn, W. 2014. Plant Metabolism. Elsevier Science, 334 pp.
44. Surbhaiyya, S.D., Gahukar, S.J., Jadhav, P.V., Bhagatm, S.Y., Moharil, M.P., Potdukhe, N.R. and Singh, P.K. 2018. In-vitro based screening of promising wheat (Triticum aestivum L.) genotypes for osmotic stress imposed at seedling stage. International Journal Current Microbiology Applied Science (6): 2500-2508.
45. Susilo, E., Setyowati, N., Nurjanah, U., Riwandi, R., and Muktamar, Z. 2023. Inhibition of seed germination under water extracts of sorghum (Sorghum bicolor L.) and its ratoon cultivated in swamp land. International Journal of Agricultural Technology, 19(3): 1337-1346.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهشهای بذر ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.