1. Ansari, O. and Sharif Zadeh, F. 2013. Enzyme activity and germination characteristics improved with treatments that extend vigor of primed Mountain Rye seeds under ageing. Theoretical and Experimental Plant Physiology, 25(3): 1-6.
2. Bakhtavar, M.A. and Afzal, I. 2020. Climate smart dry chain technology for safe storage of quinoa seeds. Scientific Reports, 10(1): 1-12. [
DOI:10.1038/s41598-020-69190-w] [
PMID] [
]
3. Bernfeld, P. 1955. Amylase and Proteases. Methods in enzymology, 1: 149-154. [
DOI:10.1016/0076-6879(55)01021-5]
4. Boniecka, J., Kotowicz, K., Skrzypek, E., Dziurka, K., Rewers, M., Jedrzejczyk, I., Wilmowicz, E., Berdychowska, J. and Dąbrowska, G.B. 2019. Potential biochemical, genetic and molecular markers of deterioration advancement in seeds of oilseed rape (Brassica napus L.). Industrial Crops and Products, 130: 478-49. [
DOI:10.1016/j.indcrop.2018.12.098]
5. Buijs, G., Kodde, J., Groot, S.P. and Bentsink, L. 2018. Seed dormancy release accelerated by elevated partial pressure of oxygen is associated with DOG loci. Journal of Experimental Botany, 69(15): 3601-3608. [
DOI:10.1093/jxb/ery156] [
PMID] [
]
6. Buijs, G., Willems, L.A., Kodde, J., Groot, S.P. and Bentsink, L. 2020. Evaluating the EPPO method for seed longevity analyses in Arabidopsis. Plant Science, 301: 110644. [
DOI:10.1016/j.plantsci.2020.110644] [
PMID]
7. Chen, X., Börner, A., Xin, X., Nagel, M., He, J., Li, J., Li, N., Lu, X. and Yin, G. 2021. Comparative proteomics at the critical node of vigor loss in wheat seeds differing in storability. Frontiers in Plant Science, 1883. [
DOI:10.3389/fpls.2021.707184] [
PMID] [
]
8. Demir, I., Kuzucu, C.O., Ermis, S., Memis, N. and Kadioglu, N. 2022. Estimation of seed longevity in onion seed lots by a vigor test of radicle emergence test in artificial ageing conditions. Horticulturae, 8(11): 1063. [
DOI:10.3390/horticulturae8111063]
9. Ebone, L.A., Caverzan, A. and Chavarria, G. 2019. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiology and Biochemistry, 145: 34-42. [
DOI:10.1016/j.plaphy.2019.10.028] [
PMID]
10. Ebone, L.A., Caverzan, A., Silveira, D.C., Siqueira, L.d.O., Lângaro, N.C., Chiomento, J.L.T. and Chavarria, G. 2020. Biochemical profile of the soybean seed embryonic axis and its changes during accelerated aging. Biology, 9(8): 186. [
DOI:10.3390/biology9080186] [
PMID] [
]
11. Fenollosa, E., Jené, L. and Munné-Bosch, S. 2020. A rapid and sensitive method to assess seed longevity through accelerated aging in an invasive plant species. Plant Methods, 16(1): 1-11. [
DOI:10.1186/s13007-020-00607-3] [
PMID] [
]
12. Gerna, D., Ballesteros, D., Arc, E., Stöggl, W., Seal, C.E., Marami-Zonouz, N., Na, C.S., Kranner, I. and Roach, T. 2022. Does oxygen affect ageing mechanisms of Pinus densiflora seeds? A matter of cytoplasmic physical state. Journal of Experimental Botany, 73(8): 2631-2649. [
DOI:10.1093/jxb/erac024] [
PMID]
13. Gerna, D., Ballesteros, D., Stöggl, W., Arc, E., Seal, C.E., Na, C.S., Kranner, I. and Roach, T. 2020. Cytoplasmic physical state governs the influence of oxygen on Pinus densiflora seed ageing. BioRxiv, 12: 421446. [
DOI:10.1101/2020.12.11.421446]
14. Hampton, J.G. and TeKrony, D.M. 1995. Handbook of vigour test methods. The International Seed Testing Association. Zurich. 117p.
15. Heath, R. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1): 189-198. [
DOI:10.1016/0003-9861(68)90654-1] [
PMID]
16. ISTA. 2013. International rules for seed testing: Weight determination. Int. Seed Testing Assoc., Bassersdorf, Switzerland,
17. Javidi, M.R., Maali-Amiri, R., Poormazaheri, H., Niaraki, M.S. and Kariman, K. 2022. Cold stress-induced changes in metabolism of carbonyl compounds and membrane fatty acid composition in chickpea. Plant Physiology and Biochemistry, 192: 10-19. [
DOI:10.1016/j.plaphy.2022.09.031] [
PMID]
18. Jiang, F.L., Bo, L.P., Xu, J.J. and Wu, Z. 2018. Changes in respiration and structure of non-heading Chinese cabbage seeds during gradual artificial aging. Scientia Horticulturae, 238: 14-22. [
DOI:10.1016/j.scienta.2018.04.011]
19. Kuai, J., Liu, Z., Wang, Y., Meng, Y., Chen, B., Zhao, W., Zhou, Z. and Oosterhuis, D.M. 2014. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. Plant Science, 223: 79-98. [
DOI:10.1016/j.plantsci.2014.03.010] [
PMID]
20. Liu, Y., Shen, X., Sha, M., Feng, Z. and Liu, Y. 2023. Natural bioactive flavonoids as promising agents in alleviating exercise-induced fatigue. Food Bioscience, 102360. [
DOI:10.1016/j.fbio.2023.102360]
21. Loreto, F. and Velikova, V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127(4): 1781-1781. [
DOI:10.1104/pp.010497] [
PMID] [
]
22. Malek, M., Ghaderi-Far, F., Torabi, B. and Sadeghipour, H.R. 2022. Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L.). Journal of Plant Physiology, 269: 153614. [
DOI:10.1016/j.jplph.2021.153614] [
PMID]
23. Nagel, M., Seal, C.E., Colville, L., Rodenstein, A., Un, S., Richter, J., Pritchard, H.W., Börner, A. and Kranner, I. 2019. Wheat seed ageing viewed through the cellular redox environment and changes in pH. Free Radical Research, 53(6): 641-654. [
DOI:10.1080/10715762.2019.1620226] [
PMID]
24. Nigam, M., Mishra, A.P., Salehi, B., Kumar, M., Sahrifi-Rad, M., Coviello, E., Iriti, M. and Sharifi-Rad, J. 2019. Accelerated ageing induces physiological and biochemical changes in tomato seeds involving MAPK pathways. Scientia Horticulturae, 248: 20-28. [
DOI:10.1016/j.scienta.2018.12.056]
25. Oenel, A., Fekete, A., Krischke, M., Faul, S.C., Gresser, G., Havaux, M., Mueller, M.J. and Berger, S. 2017. Enzymatic and non-enzymatic mechanisms contribute to lipid oxidation during seed aging. Plant and Cell Physiology, 58(5): 925-933. [
DOI:10.1093/pcp/pcx036] [
PMID]
26. Paravar, A., Farahani, S.M. and Rezazadeh, A. 2023. Morphological, physiological and biochemical response of Lallemantia species to elevated temperature and light duration during seed development. Heliyon, 9(4): e15149. [
DOI:10.1016/j.heliyon.2023.e15149] [
PMID] [
]
27. Paravar, A., Maleki Farahani, S. and Rezazadeh, A. 2024. How storage circumstance alters the quality of seeds of Lallemantia iberica and Lallemantia royleana produced under maternal drought stress. Environmental and Experimental Botany, 217: 105537. [
DOI:10.1016/j.envexpbot.2023.105537]
28. Paravar, A., Maleki Farahani, S. and Rezazadeh, A.R. 2018. Effect of drought stress during seed development on seed vigour, membrane peroxidation and antioxidant activity in different species of Balangu. Journal of Crops Improvement, 20(1): 145-159. [In Persian with English Summary].
29. Paravar, A., Maleki Farahani, S., and Rezazadeh, A.R. 2021. Fatty acid composition and eco-agronomical traits of Lallemantia species modulated upon exposed to arbuscular mycorrhizal fungi and nano-iron chelate fertilizers under water deficit conditions. This Preprint is Under Review at BMC Plant Biology. [
DOI:10.21203/rs.3.rs-143811/v1]
30. Paravar, A., Maleki Farahani, S., Rezazadeh, A. and Keshavarz Afshar, R. 2023. How nano‐iron chelate and arbuscular mycorrhizal fungi mitigate water stress in Lallemantia species: A growth and physio‐biochemical properties. Journal of Plant Nutrition and Soil Science, 187(5): 621-638. [
DOI:10.1002/jpln.202300115]
31. Prasad, C.M., Kodde, J., Angenent, G.C., de Vos, R.C., Diez-Simon, C., Mumm, R., Hay, F.R., Siricharoen, S., Yadava, D.K. and Groot, S.P. 2022. Experimental rice seed aging under elevated oxygen pressure: Methodology and mechanism. Frontiers in Plant Science, 13: 1050411. [
DOI:10.3389/fpls.2022.1050411] [
PMID] [
]
32. Ranganathan, U. and Groot, S.P. 2023. Seed Longevity and Deterioration. Seed Science and Technology: Biology, Production, Quality, Springer Nature Singapore Singapore: 91-108. [
DOI:10.1007/978-981-19-5888-5_5]
33. Savage, G., McNeil, D. and Dutta, P. 1997. Lipid composition and oxidative stability of oils in hazelnuts (Corylus avellana L.) grown in New Zealand. Journal of the American Oil Chemists' Society, 74(6): 755-759. [
DOI:10.1007/s11746-997-0214-x]
34. Seyyedi, S.M., Afshari, R.T. and Daneshmandi, M. 2018. The relationships between fatty acids and heterotrophic seedling growth in winter canola cultivars during accelerated seed aging process. South African Journal of Botany, 119: 353-361. [
DOI:10.1016/j.sajb.2018.09.034]
35. Silva, G., Sales, J., Nascimento, K., Rodrigues, A., Camelo, G. and Borges, E. 2020. Biochemical and physiological changes in Dipteryx alata Vog. Seeds during germination and accelerated aging. South African Journal of Botany, 131: 84-92. [
DOI:10.1016/j.sajb.2020.02.007]
36. Wang, S., Liu, W., He, Y., Adegoke, T.V., Ying, J., Tong, X., Li, Z., Tang, L., Wang, H. and Zhang, J. 2021. BZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1. Plant Physiology and Biochemistry, 169: 112-118. [
DOI:10.1016/j.plaphy.2021.11.005] [
PMID]
37. Whitehouse, K.J. and Norton, S.L. 2022. Environmental effect on temporal patterns in lentil seed quality development. Seed Science Research, 32(1): 1-12. [
DOI:10.1017/S0960258521000313]
38. Xia, F., Cheng, H., Chen, L., Zhu, H., Mao, P. and Wang, M. 2020. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in Oat seeds. BMC Plant Biology, 20(1): 1-11. [
DOI:10.1186/s12870-020-2321-x] [
PMID] [
]
39. Zhang, K., Zhang, Y., Sun, J., Meng, J. and Tao, J. 2021. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiology and Biochemistry, 158: 475-485. [
DOI:10.1016/j.plaphy.2020.11.031] [
PMID]
40. Zinsmeister, J., Leprince, O. and Buitink, J. 2020. Molecular and environmental factors regulating seed longevity. Biochemical Journal, 477(2): 305-323. [
DOI:10.1042/BCJ20190165] [
PMID]