جلد 10، شماره 1 - ( (بهار و تابستان) 1402 )                   سال1402، جلد10 شماره 1 صفحات 193-175 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ababaf M, Omidi H, Bakhshandeh A. (2023). Germination indices and morphological properties of Catharanthus roseus Seedlings affected by hormone-priming technique under polyethylene glycol drought stress. Iranian J. Seed Res.. 10(1), 175-193. doi:10.61186/yujs.10.1.175
URL: http://yujs.yu.ac.ir/jisr/article-1-569-fa.html
عباباف مرضیه، امیدی حشمت، بخشنده عبدالمهدی. شاخص‌های جوانه‌زنی و ویژگی‌های ریخت‌شناسی گیاهچه‌های پروانش (Catharanthus roseus) تحت تأثیر پیش‌تیمار هورمونی و تنش خشکی پژوهشهای بذر ایران 1402; 10 (1) :193-175 10.61186/yujs.10.1.175

URL: http://yujs.yu.ac.ir/jisr/article-1-569-fa.html


دانشگاه شاهد ، m.ababaf@gmail.com
چکیده:   (1519 مشاهده)
چکیده مبسوط
مقدمه: راهبردهای مختلفی جهت بهبود رشد و بهره‌وری گیاه از طریق رهیافت‌های ژنتیکی، مهندسی ژنتیک و اصلاح استفاده شده است. بااین‌حال، با توجه به امکان‌سنجی اقتصادی و سهولت کاربرد، فناوری پرایمینگ به‌عنوان «کاهش‌دهنده تنش» می‌تواند زمینه وسیعی را در تولیدات کشاورزی ایجاد کند. هدف از این پژوهش ارزیابی توانایی پیش‌تیمار بذر پروانش با هورمون‌های گیاهی اسید سالیسیلیک و اسید جاسمونیک تحت تنش خشکی جهت کاهش تأثیر محدودیت آب در طول دوره جوانه‌زنی است.
مواد و روش‌ها: دو آزمایش جداگانه به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار در آزمایشگاه علوم و تکنولوژی بذر دانشکده علوم کشاورزی دانشگاه شاهد تهران اجرا گردید. در آزمایش اول تیمارهای مورد استفاده شامل پیش‌تیمار بذر با اسید سالیسیلیک در دو سطح (5/0 و 1 میلی مولار)، مدت‌زمان پیش‌تیمار در دو سطح (24 و 48 ساعت) و تنش خشکی با استفاده از پلی‌اتیلن گلیکول 6000 در 6 سطح (صفر، 1/0-، 5/0-، 1-، 5/1- و 2- مگاپاسکال) بود. در آزمایش دوم تیمارها شامل اسید جاسمونیک (10 میکرومولار)، مدت‌زمان پیش‌تیمار در دو سطح (12 و 24 ساعت) و تنش خشکی در شش سطح (صفر، 1/0-، 5/0-، 1-، 5/1- و 2- مگاپاسکال) بود. در هر دو آزمایش بذرهای خشک (بدون پیش‌تیمار) به‌عنوان شاهد در نظر گرفته شد.
یافته‌ها: در این پژوهش تیمارهای خشکی 5/1- و 2- مگاپاسکال آزمایش اول و 1-، 5/1- و 2- مگاپاسکال آزمایش دوم هیچ گونه جوانه‌زنی نداشتند. پرایمینگ بذر با اسید سالیسیلیک و اسید جاسمونیک موجب بهبود درصد جوانه‌زنی بذرها شد. به‌طوری که در آزمایش اول بیشترین درصد جوانه‌زنی (33/97)، در شرایط بدون تنش خشکی، با اعمال 5/0 میلی‌مولار اسید سالیسیلیک در زمان 48 ساعت مشاهده شد، که نسبت به تیمار شاهد 2/12 درصد افزایش داشت. در تنش خشکی 1/0- و 5/0- مگاپاسکال، تیمار 5/0 میلی‌مولار با 24 ساعت پیش‌تیمار بیشترین درصد جوانه‌زنی را نشان داد؛ ولی در تنش 1- مگاپاسکال، تیمار 5/0 میلی‌مولار و 48 ساعت نسبت به دیگر تیمارهای اسید سالیسیلیک و زمان برتر بود. در آزمایش دوم بیشترین درصد جوانه‌زنی (3/98) در غلظت 10 میکرومولار اسید جاسمونیک در طی 24 ساعت پیش‌تیمار در شرایط عدم تنش خشکی بود، که نسبت به تیمار شاهد 4/40 درصد افزایش نشان داد.
نتیجه‌گیری: نتایج تحقیق حاضر اهمیت اسید سالیسیلیک و اسید جاسمونیک را در مرحله جوانه‌زنی بذر هنگام مواجهه با تنش خشکی نشان داد. پیش‌تیمار بذر با اسید سالیسیلیک اثرات مضر وارده بر جوانه‌زنی و رشد را که در حضور تنش خشکی ایجاد شده بود، بهبود بخشید. فرایند انطباق به تنش که توسط اسید جاسمونیک شروع شده، می‌تواند به‌پیش تیمار با اسید جاسمونیک قبل از اعمال خشکی نسبت داده شود.

جنبه‌های نوآوری:
  1. تأثیر پیش‌تیمار بذر پروانش با فیتوهورمون‌های اسید سالیسیلیک و اسید جاسمونیک بر خصوصیات جوانه‌زنی بذرها تحت تنش خشکی بررسی شد.
  2. پیش‌تیمار بذر پروانش با اسید سالیسیلیک منجر به افزایش درصد و بهبود خصوصیات جوانه‌زنی بذر پروانش تحت تنش خشکی شد.
متن کامل [PDF 577 kb]   (609 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فیزیولوژی بذر
دریافت: 1401/9/16 | ویرایش نهایی: 1402/12/2 | پذیرش: 1402/2/5 | انتشار الکترونیک: 1402/9/5

فهرست منابع
1. Ababaf, M., Omidi, H. and Bakhshandeh. A.M. 2021. Determination of optimum concentration and time of pre-treatment with plant growth regulators on germination indices of Catharanthus roseus Seed. Iranian Journal of Seed Research, 7(2): 191-207. [In Persian, with English Summary] [DOI:10.52547/yujs.7.2.191]
2. Abati, J., Brzezinski, C.R., Zucareli, C., Henning, F.A., Alves, V.F.N. and Garcia, V.V. 2014. Qualidade fisiológica de sementes de trigo tratadas com biorregulador em condições de restrição hídrica. Embrapa Soja-Artigo em periódico indexado (ALICE), 24(1): 32-36.
3. Abdel-Ghany, S.E., Ullah, F., Ben-Hur, A. and Reddy, A.S. 2020. Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress. International Journal of Molecular Sciences, 21(3): 772. [DOI:10.3390/ijms21030772] [PMID] []
4. Acharjee, S., Kumar, R. and Kumar, N. 2022. Role of plant biotechnology in enhancement of alkaloid production from cell culture system of Catharanthus roseus: A medicinal plant with potent anti-tumor properties. Industrial Crops and Products, 176: 114298. [DOI:10.1016/j.indcrop.2021.114298]
5. Alam, M.M., Nahar, K., Hasanuzzaman, M. and Fujita, M. 2014. Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnology Reports, 8(3): 279-93. [DOI:10.1007/s11816-014-0321-8]
6. Amirjani, M.R. 2015. Effect of salinity stress on seed germination and antioxidative defense system of Catharanthus roseus. ARPN Journal of Agricultural and Biological Science, 10: 163-171.
7. Ansari, O. and Sharif-Zadeh, F. 2012. Does Gibberellic acid (GA), Salicylic acid (SA) and Ascorbic acid (ASc) improve mountain Rye (Secale montanum) seeds germination and seedlings growth under cold stress?. International Research Journal of Applied and Basic Sciences, 3(8): 1651-1657.
8. Arbaoui, M., Yahia, N. and Belkhodja, M. 2015. Germination of the tomato (Lycopersicon esculentum Mill.) in response to salt stress combined with hormones. International Journal of Agronomy and Agricultural Research, 7(3): 14-24.
9. Ceritoğlu, M. and Erman, M. 2020. Mitigation of salinity stress on chickpea germination by salicylic acid priming. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3): 582-591. [DOI:10.24180/ijaws.774969]
10. Creelman, R. and Mullet, J.E. 1997. Biosynthesis and action of jasmonate in plant. Annual Review of Plant Physiology and Plant Molecular Biology, 48(1): 355-381. [DOI:10.1146/annurev.arplant.48.1.355] [PMID]
11. Din, J., Khan, S., Ali, I. and Gurmani, A. 2011. Physiological and agronomic response of canola varieties to drought stress. The Journal of Animal & Plant Sciences, 21(1): 78-82.
12. Enteshari, Sh. and Jafari, T. 2013. The effects of methyl jasmonate and salinity on germination and seedling growth in Ocimum basilicum L. Iranian Journal of Plant Physiology, 3: 749-756. [In Persian, with English Summary]
13. Fariduddin, Q., Hayat, S. and Ahmad, A. 2003. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41:281-284. [DOI:10.1023/B:PHOT.0000011962.05991.6c]
14. Farooq, M., Romdhane, L., Al Sulti, M.K., Rehman, A., Al-Busaidi, W.M. and Lee, D.J. 2020. Morphological, physiological and biochemical aspects of osmopriming-induced drought tolerance in lentil. Journal of Agronomy and Crop Science, 206(2): 176-186. [DOI:10.1111/jac.12384]
15. Galviz-Fajardo, Y.C., Bortolin, G.S., Deuner, S., Amarante, L.d., Reolon, F. and Moraes, D.M.d. 2020. Seed priming with salicylic acid potentiates water restriction-induced effects in tomato seed germination and early seedling growth. Journal of Seed Science, 42. e202042031. [DOI:10.1590/2317-1545v42234256]
16. Ghasemi, N., Omidi, H. and Bostani. A. 2021. Morphological properties of Catharanthus roseus L. seedlings affected by priming techniques under natural salinity stress. Journal of Plant Growth Regulation, 40(2): 550-557. [DOI:10.1007/s00344-020-10118-z]
17. Gondor, O.K., Janda, T., Soós, V., Pál, M., Majláth, I., Adak, M.K., Balázs, E. and Szalai, G. 2016. Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Frontiers in Plant Science, 7: 1447. [DOI:10.3389/fpls.2016.01447] [PMID] []
18. Govahi, M., Arvin, M.J. and Saffari, G.H. 2008. Response of seed germination and seedling growth of sugar beet to low temperature by priming with PEG, acetylsalicylic acid and methyl jasmonate. Agrochimica, 52(1): 12-22.
19. Hosseini, H. and Rezvani Moghadam, P. 2006. Effect of water and salinity stress in seed germination on Isabgol (Plantago ovata). Iranian Journal of Field Crops Research, 4: 15-22. [In Persian, with English Summary]
20. Iqbal, M. and Ashraf, M. 2007. Seed treatment with auxins modulates growth and ion partitioning in salt‐stressed wheat plants. Journal of Integrative Plant Biology, 49(7): 1003-1015. [DOI:10.1111/j.1672-9072.2007.00488.x]
21. Jaleel, C.A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R. and Panneerselvam, R. 2007. Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany, 73: 190-195. [DOI:10.1016/j.sajb.2006.11.001]
22. Jini, D. and Joseph, B. 2017. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science, 24(2): 97-108. [DOI:10.1016/j.rsci.2016.07.007]
23. Kabiri, R. and Taghizade, M. 2015. Effect of salicylic acid pretreatment on germination and early growth of Black Cumin (Nigella sativa) seedling under salinity stress. Iranian Journal of Seed Science and Technology, 4(1): 61-72. [In Persian with English Summary].
24. Kabiri, R., Hatami, A. and Naghizadeh. M. 2014. Effect of drought stress and its interaction with salicylic acid on fennel (Foeniculum vulgare Mill.) germination and early seedling growth. Journal of Medicinal Plants and By-Products, 2: 107-116.
25. Karami, L., Hedayat, M. and Farahbakhsh, S. 2020. Effect of salicylic acid priming on seed germination and morphophysiological and biochemical characteristics of tomato seedling (Lycopersicom esculentun). Iranian Journal of Seed Research, 7(1): 165-179. [In Persian, with English Summary] [DOI:10.29252/yujs.7.1.165]
26. Khalaki, M.A., Moameri, M., Lajayer, B.A. and Astatkie, T. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regulation. 93(1):13-28. [DOI:10.1007/s10725-020-00670-9]
27. Miao, Y., Luo, X., Gao, X., Wang, W., Li, B. and Hou, L. 2020. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. Scientia Horticulturae, 272: 109577. [DOI:10.1016/j.scienta.2020.109577]
28. Michel, B.E. and Kaufmann, M.R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51: 914-916. [DOI:10.1104/pp.51.5.914] [PMID] []
29. Molina, A., Bueno, P., Rodriguez-rosales, M. C., Belver, A., Venema, K. and Donaire, J. 2002. Involvement of endogenous salicylic acid content lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Physiologist, 156: 409-415. [DOI:10.1046/j.1469-8137.2002.00527.x] [PMID]
30. Moradi, R. and Rezvani Moghadam, P. 2010. Investigating the effect of pretreatment of seeds by salicylic acid on germination under salinity stress conditions Characteristics of (Foeniculum vulgare Mill) seedling growth. Iranian Journal of Field Crops Research, 8(3): 489-500. [In Persian, with English Summary]
31. Motamedi, M. and Bani Saidi, A.K. 2012. The Effects of salicylic acid on germination and seedling growth of bread wheat (Triticum aestivum L.) cultivars under salinity stress. Journal of Plant Production Science, 2(2): 43-57.
32. Poonam, S., Kaur, H. and Geetika, S. 2013. Effect of Jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp seedlings under copper stress. American Journal of Plant Sciences, 4(4): 817-823. [DOI:10.4236/ajps.2013.44100]
33. Rezaei, Z. 2014. Investigating the effect of nanoparticles on the expression of vinblastine and vincristine biosynthetic pathway genes in the cell suspension of Catharanthus roseus plant. M.Sc. dissertation, Faculty of Agriculture, Agriculture and Natural Resources Imam Khomeini International University, Iran. [In Persian, with English Summary]
34. Rhaman, M.S., Imran, S., Rauf, F., Khatun, M., Baskin, C.C., Murata, Y. and Hasanuzzaman, M. 2020. Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants, 10(1): 37. [DOI:10.3390/plants10010037] [PMID] []
35. Sakhabutdinova, A.R., Fatkhutdinova, D.R., Bezrukova, M.V. and Shakirova, F.M. 2003. Salicylic acid prevents damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology, Special Issue, 314-319.
36. Sen, A. and Puthur, J.T. 2020. Influence of different seed priming techniques on oxidative and antioxidative responses during the germination of Oryza sativa varieties. Physiology and Molecular Biology of Plants, 26: 551-565. [DOI:10.1007/s12298-019-00750-9] [PMID] []
37. Sheteiwy, M.S., Gong, D., Gao, Y., Pan, R., Hu, J. and Guan, Y. 2018. Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. Environmental and Experimental Botany, 153: 236-248. [DOI:10.1016/j.envexpbot.2018.06.001]
38. Silva, A.C.D., Suassuna, J.F., Melo, A.S.D., Costa, R.R., Andrade, W.L.D. and Silva, D.C.D. 2017. Salicylic acid as attenuator of drought stress on germination and initial development of sesame. Revista Brasileira de Engenharia Agrícola e Ambiental, 21: 156-162. [DOI:10.1590/1807-1929/agriambi.v21n3p156-162]
39. Sirhindi, G., Mir, M. A., Abd-Allah, E. F., Ahmad, P., and Gucel, S. 2016. Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Frontiers in Plant Science, 7: 591.‏ [DOI:10.3389/fpls.2016.00591] [PMID] []
40. Tahmasebi, R., N.A. Sajedi, and Sh. Shoaei. 2017. Evaluation effect of different solutions and seed priming treatments on germination, agronomic and quality characteristics of red bean genotypes. Iranian Journal of Pluses Research, 8(1): 60-72. [In Persian, with English Summary]
41. Thomas, T.T.D. and Puthur. J.T. 2020. UV-B priming enhances specific secondary metabolites in Oryza sativa (L.) empowering to encounter diverse abiotic stresses. Plant Growth Regulation, 92:169-180. [DOI:10.1007/s10725-020-00628-x]
42. Ullah, H., Santiago-Arenas, R., Ferdous, Z., Attia, A. and Datta, A. 2019. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Advances in Agronomy, 156: 109-157. [DOI:10.1016/bs.agron.2019.02.002]
43. Wu, W., Liu, L. and Yan, Y. 2019. Transcription factor TERF1 regulates nuclear genes expression through miRNAs in tobacco under drought stress condition. Plant Growth Regulation, 89(3): 251-258. https://doi.org/10.1007/s10725-014-9916-x [DOI:10.1007/s10725-019-00532-z]
44. Xiong, B., Wang, Y., Zhang, Y., Ma, M., Gao, Y., Zhou, Z., Wang, B., Wang, T., Lv, X. and Wang, X. 2020. Alleviation of drought stress and the physiological mechanisms in citrus cultivar (Huangguogan) treated with methyl jasmonate. Biosci Biotechnol Biochem, 84:1-8. [DOI:10.1080/09168451.2020.1771676] [PMID]
45. Yan, Z., Chen, J. and Li, X. 2013. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicology and Environmental Safety, 98: 203-209. [DOI:10.1016/j.ecoenv.2013.08.019] [PMID]
46. Zamani, N. and Roshandel, P. 2018. The effect of jasmonic acid on seed germination of halophytes species in high levels of salinity. Iranian Journal of Seed Science and Technology, 7(2): 29-42. [In Persian, with English Summary]
47. Zhang, Y., Chen, K., Zhang, S. and Ferguson, I. 2003. The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biology and Technology, 28: 67-74. [DOI:10.1016/S0925-5214(02)00172-2]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهشهای بذر ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.