1. Abdul-Baki, A.A. and Anderson, J.D. 1973. Vigor determination in soybean by multiple criteria. Crop Science, 13(6): 630-633. [
DOI:10.2135/cropsci1973.0011183X001300060013x]
2. Acharya, P., Jayaprakasha, G.K., Crosby, K.M., Jifon, J.L. and Patil, B.S. 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10(1): 1-16. [
DOI:10.1038/s41598-020-61696-7] [
PMID] [
PMCID]
3. Adhikari, T., Kundu, S. and Rao, A.S. 2013. Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). International Journal of Agricultural Science and Technology, 4(8): 809-816.
4. Agrawal, R.L. 1997. Seed Technology. Oxford and IBH Publishing Co, PUT.LTD, New Delhi. 552p.
5. Bassett, A.R., Tibbit, C., Ponting, C.P. and Liu, J.L. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Reports, 4(1): 220-228. [
DOI:10.1016/j.celrep.2013.06.020] [
PMID] [
PMCID]
6. Castiglione, M.R., Giorgetti, L., Geri, C. and Cremonini, R. 2011. The effects of nano- TiO2 on seed germination, development and mitosis of root tip cells of (Vicia narbonensis L.) and (Zea mays L). Journal of Nanoparticle Research, 13(6): 2443-2449. [
DOI:10.1007/s11051-010-0135-8]
7. Cox, J.D., Silveiro, I. and Garcia de Abajo, F.J. 2016. Quantum effects in the nonlinear response of graphene plasmons. ACS Nano, 10(2): 1995-2003. [
DOI:10.1021/acsnano.5b06110] [
PMID]
8. Dolatabadi, A., Sani, B. and Moaveni, P. 2015. Impact of nanosized titanium dioxide on agronomical and physiological characteristics of annual medic (Medicago scutellata L.). Cercetari Agronomice in Moldova, 48(3): 53-61. [
DOI:10.1515/cerce-2015-0041]
9. Ghasemi Golazani, K. and Dalil, B. 2011. Germination and seed vigor tests. Publications Jahad Daneshgahi of Mashhad.104p. [In Persian].
10. Haghighi, M. and Daneshmand, B. 2013. Comparing the effects of titanium and nano-titanium on growth and photosynthetic changes of tomato in hydroponic culture. Journal of Science and Technology of Greenhouse Culture, 4(13): 73-80. [In Persian with English Summary].
11. Hatami, M., Ghorbanpour, M. and Salehiarjomand, H. 2014. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological Environment, 8(22): 53-59.
12. ISTA. 2008. International Rules for Seed Testing Edition. International Seed Testing Association, Bassersdorf, Switzerland.
13. Javanmard, Z., Tabari Koochaksaraee, M. and Ahmadloo, F. 2013. Effect of osmopriming on germination and physiological qualitative characteristic of Pinus eldarica Medw seed under drought stress. Journal of Plant Research (Iranian Journal of Biology), 27(3): 395-405. [In Persian with English Summary].
14. Kafi, M. and Rahimi, Z. 2011. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Science and Plant Nutrition, 57(2): 341-347. [In Persian with English Summary]. [
DOI:10.1080/00380768.2011.567398]
15. Lei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., Wang, Q., Yuan, Y. and Liao, M. 2008. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid invivo screening method for nanotoxicity. Toxicology and Applied Pharmacology, 232 (2): 292-301. [
DOI:10.1016/j.taap.2008.06.026] [
PMID]
16. Lin., D. and Xing, B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2): 243-253. [
DOI:10.1016/j.envpol.2007.01.016] [
PMID]
17. Mahajan, S. and Tuteja, N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2):139-158. [
DOI:10.1016/j.abb.2005.10.018] [
PMID]
18. Malik, S., Ashraf, M., Arshad, M. and Malik, T.A. 2015. Effect of ascorbic acid application on physiology of wheat under drought stress. Pakistan Journal of Agricultural Sciences, 52(1). 209-217
19. Marambe, B. and Ando, T. 1992. Phenolic acids as potential seed germination-inhibitors in animal-waste composts. Soil Science and Plant Nutrition, 38(4): 727-733. [
DOI:10.1080/00380768.1992.10416703]
20. Masoudi, A., Hosseini, H.R.M., Shokrgozar, M.A., Ahmadi, R. and Oghabian, M.A. 2012. The effect of poly (ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. International Journal of Pharmaceutics, 433(1-2):129-141. [
DOI:10.1016/j.ijpharm.2012.04.080] [
PMID]
21. Mathew, S.S., Sunny, N.E. and Shanmugam, V. 2021. Green synthesis of Anatase Titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorganic Chemistry Communications, 126: 108485. [
DOI:10.1016/j.inoche.2021.108485]
22. Matthews, S. and Khajeh Hosseini, M. 2007. Length of the lag period of germination and metabolic repair explain vigour differences in seed lots of maize (Zea mays L.). Seed Science Technology, 35: 200-212. [
DOI:10.15258/sst.2007.35.1.18]
23. Michel, B.E. and Kaufmann, M.R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5): 914-916. [
DOI:10.1104/pp.51.5.914] [
PMID] [
PMCID]
24. Moraru, C.I., Panchapakesan, C.P., Huang, Q., Takhistov, P., Liu, S. and Kokini, J.L. 2003. Nanotechnology: a new frontier in food science understanding the special properties of materials of nanometer size will allow food scientists to design new, healthier, tastier, and safer foods. Nanotechnology, 57(12): 24-29.
25. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Kumar, D.S. 2010. Nanoparticulate material delivery to plants. Plant Science, 179(3): 154-163. [
DOI:10.1016/j.plantsci.2010.04.012]
26. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N. and Behra, R. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science and Technology, 42(23): 8959-8964. [
DOI:10.1021/es801785m] [
PMID]
27. Ogunkunle, C.O., Gambari, H., Agbaje, F., Okoro, H.K., Asogwa, N.T., Vishwakarma, V. and Fatoba, P.O. 2020. Effect of low-dose nano titanium dioxide intervention on cd uptake and stress enzymes activity in cd-stressed cowpea [Vigna unguiculata (L.) Walp] plants. Bulletin of Environmental Contamination and Toxicology, 104(5):619-626. [
DOI:10.1007/s00128-020-02824-x] [
PMID]
28. Raskar, S.V. and Laware, S.L. 2014. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal Current Microbiol Applied Science, 3(2): 467-473.
29. Rico, C.M., Morales, M.I., McCreary, R., Castillo-Michel, H., Barrios, A.C., Hong, J. and Peralta-Videa, J.R. 2013. Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environmental Science and Technology, 47(24): 14110-14118. [
DOI:10.1021/es4033887] [
PMID]
30. Singh, K.B. and Saxena, M.C. 1999. Chickpeas (The Tropical Agriculturalist). MacMilan Education Ltd., London. 134p.
31. Tarrahi, R., Khataee, A., Movafeghi, A., Rezanejad, F. and Gohari, G. 2017. Toxicological implications of selenium nanoparticles with different coatings along with Se4+ on Lemna minor. Chemosphere, 181: 655-665. [
DOI:10.1016/j.chemosphere.2017.04.142] [
PMID]
32. Zhang, R., Cheng, X., Hou, P. and Ye, Z. 2015. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construction and Building Materials, 81: 35-41. [
DOI:10.1016/j.conbuildmat.2015.02.003]
33. Zheng, L., Hong, F., Lu, S. and Liu, C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1): 83-91 [
DOI:10.1385/BTER:104:1:083] [
PMID]
34. Zhu, H., Han, J., Xiao, J.Q. and Jin, Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10(6): 713-717. [
DOI:10.1039/b805998e] [
PMID]