1. Acosta, J.M., Bentivegna, D.J., Panigo, E.S. and Dellaferrera, I. 2014. Influence of environmental factors on seed germination and emergence of Iresine diffusa. Weed Research, 54(6): 584-592. [
DOI:10.1111/wre.12114]
2. Akramghaderi, F., Soltani, A. and Sadeghipour, H.R. 2008. Cardinal temperature of germination in medicinal pumpkin (Cucurbita pepo L. subsp. pepo. Convar. pepo var. styriaca Greb), borage (Borago officinalis L.) and black cumin (Nigella sativa L.). Asian Journal of Plant Science, 2: 101-119. [
DOI:10.3923/ajps.2008.574.578]
3. Ansari, O. and Sharif-Zadeh, F. 2012. Does gibberellic acid (GA), salicylic acid (SA) and ascorbic acid (ASc) improve Mountain Rye (Secale montanum) seeds germination and seedlings growth under cold stress?. International Research Journal of Applied and Basic Sciences, 3(8): 1651-1657.
4. Ansari, O., Gherekhloo, J., Kamkar, B. and Ghaderi-Far, F. 2016. Breaking seed dormancy and determining cardinal temperatures for Malva sylvestris using nonlinear regression. Seed Science and Technology, 44(3): 1-14. [
DOI:10.15258/sst.2016.44.3.05]
5. Ashraf, M. and Foolad, M.R. 2005. Pre-sowing seed treatment- a shotgun approach to improve germination growth and crop yield under saline and none-saline condition. Advances in Agronomy, 88: 223-271. [
DOI:10.1016/S0065-2113(05)88006-X]
6. Bewley, J.D. and Black, M. 1994. Seeds: Physiology of Development and Germination, 2nd ed. Plenum Press, New York. [
DOI:10.1007/978-1-4899-1002-8]
7. Bradford, K.J. 2002. Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50: 248-260. [
DOI:10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2]
8. Buhler, D.D. 2000. Theoretical and practice challenges to an IPM approach to weed management. Weed Science, 48(3): 274-280. [
DOI:10.1614/0043-1745(2000)048[0274:TAPCTA]2.0.CO;2]
9. Chen, K. and Arora, R. 2013. Priming memory invokes seed stress-tolerance. Environmental and Experimental Botany, 94: 33-45. [
DOI:10.1016/j.envexpbot.2012.03.005]
10. Colbach, N., Du¨rr, C., Roger-Estrade, J. and Caneill, J. 2005. How to model the effects of farming practices on weed emergence. Weed Research, 45(1): 2-17. [
DOI:10.1111/j.1365-3180.2004.00428.x]
11. Derakhshan, A., Gherekhloo, J., Vidal, R.B. and De Prado, R. 2013. Quantitative description of the germination of Littleseed canarygrass (Phalaris minor) in response to temperature. Weed Science, 62(2): 250-257. [
DOI:10.1614/WS-D-13-00055.1]
12. Dumur, D., Pilbeam, C.J. and Craigon, J. 1990. Use of the Weibull function to calculate cardinal temperatures in Faba bean. Journal of Experimental Botany, 41(11): 1423-1430. [
DOI:10.1093/jxb/41.11.1423]
13. Eshraghi Nejad, M., Kamkar, B. and Soltani, A. 2009. Cardinal temperatures and required biological days from sowing to emergence of three millet species (common, foxtail, pearl millet). Journal of Agricultural Science and Technology, 12(3): 36-43.
14. Forcella, F., Benech Arnold, R.L. and Sanchez, R. 2000. Modelling seedling emergence. Field Crops Research, 67(2): 123-139. [
DOI:10.1016/S0378-4290(00)00088-5]
15. Ghaderi-Far, F., Soltani, A. and Sadeghipour, H.R. 2009. Evaluation of nonlinear regression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. pepo. Convar. pepo var. styriaca Greb), borage (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature. Journal of Plant Production, 16(4): 1-9. [In Persian with English Summary].
16. Hardegree, S. P. 2006. Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Annals of Botany, 97(6): 1115-1125. [
DOI:10.1093/aob/mcl071] [
PMID] [
PMCID]
17. Heidari, Z., Kamkar, B. and Masoud Sinaki, J. 2014. Determination of cardinal temperatures of milk thistle (Silybum marianum L.) germination. Advances in Plants and Agriculture Research, 1(5): 28. [
DOI:10.15406/apar.2014.01.00027]
18. Kamkar, B., Jami Al-Ahmadi, M., Mahdavi-Damghani, A. and Villalobos, F.J. 2011. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds germinate using non-linear regression models. Industrial Crops and Products, 35(1): 192-198. [
DOI:10.1016/j.indcrop.2011.06.033]
19. Karami, H. 2016. An alternative model to quantifying corn seed germination to temperature and water potential. A thesis submitted in partial fulfillment of the requirements for the degree of M.Sc. in Agronomy. Gorgan University of Agricultural Sciences and Natural Resources. [In Persian with English Summary].
20. Khalaj, H., Allahdadi, I., Irannejad, Gholamabbas, Minbashi, M. and Baghestani, M.A. 2012. Using nonlinear regression approach for prediction of cardinal temperature of canola and four common weed. Journal of Agronomy, 2(1): 21-33.
21. Lakzaei, S., Soltani, A., Zeinali, E., Ghaderifar, F. and Jafanodeh, S. 2018. Quantifying response of seedling emergence to temperature in rapeseed (Brassica napus L.) under field conditions. Iranian Journal of Crop Sciences, 19(3): 195-207. [In Persian with English Summary].
22. Parmoon, G., Moosavi, S.A., Akbari, H. and Ebadi, A. 2015. Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. The Crop Journal, 3(2): 145-151. [
DOI:10.1016/j.cj.2014.11.003]
23. Patade, V.Y., Maya, K. and Zakwan, A. 2011. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research Journal of Seed Science, 4(3): 125-136. [
DOI:10.3923/rjss.2011.125.136]
24. Piper, E.L., Boote, K.J., Jones, J.W. and Grimm, S.S. 1996. Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36: 1606-1614. [
DOI:10.2135/cropsci1996.0011183X003600060033x]
25. Shafii, B., Price, W.J., 2001. Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural, Biological, and Environmental Statistics, 6: 356-366. [
DOI:10.1198/108571101317096569]
26. Shayanfar, A., Ghaderi-Far, F., Behmaram, R., Soltani, A. and Sadeghipour, H.R. 2017. Assessment of germination and secondary dormancy behaviors of lines and cultivars of canola. Crops Improvement (Journal of Agricultural Crop Production), 19(4): 881-892.
27. Soltani, A., Gholipoor, M. and Zeinali, E. 2006. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany, 55: 195-200. [
DOI:10.1016/j.envexpbot.2004.10.012]
28. Soltani, E., Galeshi, S., Kamkar, B. and Akramghaderi, F. 2008. Modeling seed aging effects on the response of germination to temperature in wheat. Seed Science and Biotechnology, 2(1): 32-36.
29. Wang, J., Ferrell, J., MacDonald, G. and Sellers, B. 2009. Factors affecting seed germination of Cadillo (Urena lobata). Weed Science, 57(1): 31-35. [
DOI:10.1614/WS-08-092.1]
30. Wei, S., Zhang, C., Li, X., Cui, H., Huang, H., Sui, B., Meng, Q. and Zhang, H. 2009. Factors affecting Buffalobur (Solanum rostratum) seed germination and seedling emergence. Weed Science, 57(5): 521-525. [
DOI:10.1614/WE-09-054.1]
31. Wu, X., Li, J., Xu, H. and Dong, L. 2015. Factors affecting seed germination and seedling emergence of Asia Minor bluegrass (Polypogon fugax). Weed Science, 63: 440-447. [
DOI:10.1614/WS-D-14-00093.1]