Tahmasebi, A. (2023). The role of translation initiation factors in plants recessive resistance to viruses. Plant Pathology Science, 12(1), 113-121.
Abstract
Plant viruses are important pathogens that cause quantitative and qualitative decline of agricultural products all over the world. Plants resistance is the most effective way to control plant viruses. Viruses as obligate parasites to complete their infection cycle, such as the processes of protein synthesis, replication, and movement, are dependent on the compatibility of cellular factors of host plants. Absence or mutation in these essential factors for the virus infection cycle or mutation in the regulator of plant defense responses may cause the host's recessive resistance to the virus. Recessive genes identified in virus-plant interactions include eukaryotic translation initiation factors eIF4E, eIF4G, and their isoforms. A number of translation factors have been identified in plants, such as eIF3, eEF1A, and eEF1B, which are essential in interacting with viral RNAs and regulating various processes in the virus infection cycle. More awareness of molecular mechanisms of these factors as well as their interaction with other host and viral factors can be used in the development of new management methods such as silencing or genome editing against viruses.