Search published articles


Showing 3 results for Stress

Robab Ezazi, Masoud Ahmadzadeh,
Volume 3, Issue 2 (9-2014)
Abstract

Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. Depending on the crop, the yield losses associated with abiotic stresses can reach 50 to 82 percent. Extreme temperatures, drought, salinity, flooding, freezing, ultraviolet light, heavy metals, nutrient deficiency, unsuitable pH, air pollutants and mechanical damage are the most basic stressors. Because biotic stresses cause metabolic toxicity, membrane degradation, reduction of photosynthesis, decrease of nutrient uptake, changes in levels of phytohormones and ultimately affect the plant growth and its productivity, therefore reducing the effect of these stresses, is essential. Plant growth promoting rhizobacteria play an important role in plant disease management and have a high potential in alleviation the abiotic stresses.
Hamidreza Rahmani, Ebrahim Mohamadi Goltapeh, Naser Safaie,
Volume 5, Issue 1 (2-2016)
Abstract

Rahmani H. R., Mohammadi Goltapeh E. & Safaie N. 2015. The role  of  endophytic fungus Pirifomospora indica  in  plant  disease  management. Plant Pathology Science 5(1):48-61.

Piriformospora indica as the one of the most important soil endophytic microorganism, can increase yield of plants per unit area, by modifying the physiological characteristics of the host plants. It also provide the possibility of crop production in saline and arid soils or even in some conditions with biotic and abiotic stresses.  It grants resistance to plant against diseases, through the induction of systemic resistance. Also the fungus can cause an increase in resistance to salinity and drought, through the increase in antioxidant capacity of root cells and levels of resistance proteins in their host plants. In order to adopt organic farming and achieve sustainable agriculture, this fungus can be used as a suitable alternative for chemical fertilizers and pesticides.


Saeedeh Dehghanpour Farashah,
Volume 12, Issue 2 (9-2023)
Abstract

Dehghanpour Farashah S (2023) Defense responses by nitric oxide in plant-pathogen interaction. Plant Pathology Science 12(2):130-142.
The control of diseases in agriculture often relies on pesticides and chemical fertilizers, which negatively affect the rhizosphere natural microflora and ecosystem balance. Today, researchers are looking to replace these chemicals with other environment friendly agents to improve agricultural production and control plant pathogens. Research on the interaction of nitric oxide (NO) with plant pathogens has shown that NO is a key messenger in the response of plants to biotic and abiotic stresses. Due to the role of NO in the regulation of plant defense genes, especially through programmed cell death, it has attracted the attention of many plant pathologists. Although NO plays an important role in the hypersensitive reaction in response to various biotic and abiotic stresses, it has been found that NO also plays a role in regulating the expression of genes related to non-specific resistance. In this review, the role of nitric oxide in plant-pathogens interaction has been investigated.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb