Search published articles

Showing 2 results for Sadeghi

Leila Sadeghi, Salar Jamali,
Volume 5, Issue 2 (8-2016)

Sadeghi  L. & Jamali  S. 2016. Molecular plants defense mechanisms against nematodes. Plant Pathology Science 5(2):90-100.

Plant  parasitic  nematodes can devastate a wide range of  crop  plants. They are obligate parasites and have evolved compatible parasitic relationship with their host plants to obtain nutrients that are necessary to support their development and reproduction. Suppression of host defense is a key step for pathogenesis in the compatible interaction. Plant defense response is activated from the moment a nematode penetrates the plant root. Stylet and secretions of esophageal glands play central roles at during invasion to host, migration inside the roots and establishment of feeding site on host cells. New findings demonstrate that secretions of esophageal  glands of  some  nematodes as  effectors deliver  into the apoplast and cytoplasm of host cells to active plant defense responses in resistant host. Molecular  plants defense mechanisms against nematodes described in this paper.

Hamid Sadeghi Garmaroodi, Seyed Yaghob Seyed Masoumi, Ashraf Nankali,
Volume 11, Issue 1 ((Autumn & Winter) 2022)

Sadeghi Garmaroodi H, Seyed Masoumi SY, Nankali A (2022) The reaction of thirteen peach and nectarine cultivars to Verticillium wilt. Plant Pathology Science 11(1):60-73.                  Doi: 10.2982/PPS.11.1.60.
Introduction: Verticillium wilt, caused by Verticillium dahliae, is one of the most important soil-borne diseases of stone-fruit trees. Materials and Methods: Samples showing evidence of Verticillium wilt were collected from stone fruit orchards in the suburbs of Shahroud and Damavand and four isolates of V. dahliae were obtained. The fungal inoculum was prepared on sterile wheat grains and the response of 13 peach and nectarine cultivars propagated by grafting on GF305 (almond-peach hybrid) rootstock was inoculated with it in the canopy area in the garden in early spring. Sixteen weeks after inoculation, disease severity was recorded on a three-point scale. Results: All peach and nectarine cultivars were classified as very susceptible, susceptible, or semi-susceptible and none of them showed resistance. The Nectarine Independence cultivar was highly susceptible to disease, while the peach cultivar had the lowest disease severity index and was therefore classified as semi-susceptible. Conclusion: Among these cultivars, the Romestar peach cultivar is less susceptible to the disease.


Page 1 from 1     

© 2022 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb