Search published articles


Showing 4 results for Davari

Abolghasem Hosseinzadeh, Mahdi Davari, Aziz Habibi-Yangjeh,
Volume 6, Issue 2 (9-2017)
Abstract

Hoseinzadeh A., Davari M. and Habibi-Yangjeh A. 2017. Applications of nanomaterials in the fungal plant diseases management. Plant Pathology Science 6(2):68-77.

The use of nanotechnology in plant disease management has been seriously considered by researchers in recent years. Some of these reteaches have shown the antifungal effects of nano zinc oxide on Botrytis cinerea and Penicillium expansum; nano copper oxide on Aspergillus flavus; silver nanocomposite compounds (SiO₂/Ag₂S) on Aspergillus niger; Fe₃O₄/ZnO/AgBr on Fusarium graminearum, F. oxysporum and Botrytis cinerea, and carbon nanomaterials on F. graminearum. Their antifungal mechanisms are including: degradation of lipid and protein, damage to cell membranes, water channels blocking by nanomaterials and loss of spore water and plasmolysis and the inhibition of growth or destruction of fungal hyphae and prevent the sporulation.


Malihe Erfani, Mahdi Davari,
Volume 7, Issue 2 (9-2018)
Abstract

Erfani M. and Davari M. 2018. Protease inhibitors and their application against plant pathogens. Plant Pathology Science 7(2):60-72. DOI: 10.2982/PPS.7.2.60
 Proteases cleave the peptide bonds in proteins and in this way prevent protein activity by degrading them. Proteases are classified into four categories: serine proteases, cysteine proteases, aspartic proteases and metalloproteases. Plant pathogens utilize these vital molecules in plant infecting process. In the other hand, the activity of proteases is inhibited by protease inhibitors of plants. Serine is one of the protease inhibitors. The plants produce the materials inhibiting pathogenic proteases. These molecules are produced in plant cells during pathogenic microorganisms and viruses attack. Protease inhibitors are divided into several families based on sequence similarity and structure. Because the risk of pathogen resistance to this defense strategy is low, it seems these molecules could be use for biological control against plant pathogens.

Soghra Ghasemi-Doodaran, Mahdi Davari,
Volume 9, Issue 2 (8-2020)
Abstract

Ghasemi-Doodaran S, Davari M (2020) Fungal diseases of hazelnut in Iran. Plant Pathology Science 9(2):85-94. DOI: 10.2982/PPS.9.2.85.
 
Hazelnut tree has natural habitats in northwestern Iran in the forests of Ardabil and Gilan provinces. Decline disease is a threatening agent of hazelnut trees in these areas. Symptoms of the disease include weakness, reduced growth, leaf fall and dieback of the branches, branch and trunk canker and root rot that eventually lead to the gradual death or decline of the tree. In Iran the fungi cause hazelnut decline disease, Diaporthe amygdali, and Cytospora fuckelii as canker and Fusarium semitectum, F. lateritium, F. anthophilum and Armillaria mellea as root rot causative agents. This article describes symptoms of hazelnut decline in Iran, pathogenic fungi and management strategies.

Mrs. Mahsa Samiee, Mahdi Davari,
Volume 9, Issue 2 (8-2020)
Abstract

Samiee M, Davari M (2020) Important diseases of turf in Iran. Plant Pathology Science 9(2):119-128.        DOI: 10.2982/PPS.9.2.119.

Turf grass is the most important grown plant in urban green space, which functions such as temperature adjustment, increase in relative humidity, air softness and dust absorption. Fungal and fungal-like diseases are the most common lawn diseases in Iran, affecting this plant at all stages of growth, causing its decline. Pythium, Fusarium, Microdochium, Rhizoctonia, Bipolaris, Pyricularia and Colletotrichum species are known as damping-off, root and crown rot, leaf spot and anthracnose pathogens of lawns in Iran. The symptoms of these diseases, the morphological characteristics of pathogens and the methods for their management are described.

Page 1 from 1     

© 2021 CC BY-NC 4.0 | University of Yasouj Journals System Plant Pathology Science

Designed & Developed by : Yektaweb