جلد 13، شماره 1 - ( (پاییز و زمستان) 1402 )                   جلد 13 شماره 1 صفحات 134-125 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

pouraziz P, Koolivand D. (2024). The application of biopolymers in the management of plants viral diseases. Plant Pathol. Sci.. 13(1), 125-134. doi:10.61186/pps.13.1.125
URL: http://yujs.yu.ac.ir/pps/article-1-441-fa.html
پورعزیز پرستو، کولیوند داود. کاربرد پلیمرهای زیستی در مدیریت بیماری های ویروسی گیاهان دانش بیماری شناسی گیاهی 1402; 13 (1) :134-125 10.61186/pps.13.1.125

URL: http://yujs.yu.ac.ir/pps/article-1-441-fa.html


دانشگاه زنجان ، pourazizparastoo@yahoo.com
چکیده:   (434 مشاهده)
پورعزیز، پ.، کولیوند، د. (۱۴۰۲). کاربرد پلیمرهای زیستی در مدیریت بیماری­های ویروسی گیاهان. دانش بیماری­شناسی گیاهی، ۱۳(۱)، ۱۳۴-۱۲۵.
پلیمرهای با منشا طبیعی، پلیمر زیستی شناخته می ­شوند. پلیمرهای زیستی به دلیل ویژگی­های سازگاری زیستی و زیست تخریبی کاربردهای گسترده ­ای در زمینه ­های متفاوت از جمله کشاورزی پزشکی و صنعت دارند. پلیمرهای زیستی با افزایش سیستم ایمنی گیاهان از طریق تآثیر بر ژن­های مقاومت و همچنین فعال کردن مکانیسم ­های مربوط به مقاومت باعث محدود کردن فعالیت­های بیمارگرهای گیاهی می­ شوند. بنابراین استفاده از این مواد جهت مقابله با بیمارگرهای گیاهی کاربرد وسیعی در کشاورزی پیدا کرده است. استفاده از پلیمرهای زیستی جهت مقابله با بیمارگرهای گیاهی مانند قارچ­ها و باکتری­ها راه حل مناسبی برای کاهش خسارت آنها است. همچنین تیمار گیاه آلوده به ویروس با پلیمرهای زیستی باعث کاهش علایم و خسارت بیماری می ­شود. مکانیسم‌های مولکولی ضد ویروسی برخی پلیمرهای زیستی مانند کیتوزان، کیتین، الیگوکیتوزان، بتاگلوکان­ها، لنتینان، آلژینات و هیدروژل و ترکیبهای آن در مدیریت بیماریهای ویروسی گیاهان در این مقاله شرح داده شده ­اند.
متن کامل [PDF 514 kb]   (243 دریافت)    
نوع مطالعه: ترویجی | موضوع مقاله: ویروس
دریافت: 1403/2/27 | پذیرش: 1403/7/7

فهرست منابع
1. Abd El-Gawad, H., & Bondok, A. (2015). Response of tomato plants to salicylic acid and chitosan under infection with tomato mosaic virus. American-Eurasian Journal of Agricultural & Environmental, 15(8), 1520-1529.
2. Akbari, A., Bigham, A., Rahimkhoei, V., Sharifi, S., & Jabbari, E. (2022). Antiviral polymers: a review. Polymers, 14(9), 1634. [DOI:10.3390/polym14091634] [PMID] []
3. Albersheim, P., Darvill, A. G., McNeil, M., Valent, B. S., Sharp, J. K., Nothnagel, E. A., Davis, K. R., Yamazaki, N., Gollin, D. J., & York, W. S. (1983). Oligosaccharins: naturally occurring carbohydrates with biological regulatory functions. Structure and Function of Plant Genomes, 293-312. [DOI:10.1007/978-1-4684-4538-1_30]
4. Alghonaim, M. I., Alsalamah, S. A., Bazaid, A. S., & Abdelghany, T. M. (2024). Biosynthesis of CuO@ Au NPs and its formulated into biopolymers carboxymethyl cellulose and chitosan: Characterizations, antimicrobial, anticancer and antioxidant properties. Waste and Biomass Valorization,15, 1-14. [DOI:10.1007/s12649-024-02469-5]
5. Chirkov, S. (2002). The antiviral activity of chitosan. Applied Biochemistry and Microbiology, 38, 1-8. [DOI:10.1023/A:1013206517442]
6. Chirkov, S., Il'ina, A., Surgucheva, N., Letunova, E., Varitsev, Y. A., Tatarinova, N. Y., & Varlamov, V. (2001). Effect of chitosan on systemic viral infection and some defense responses in potato plants. Russian Journal of Plant Physiology, 48, 774-779. [DOI:10.1023/A:1012508625017]
7. De Marco Castro, E., Calder, P. C., & Roche, H. M. (2021). β‐1, 3/1, 6‐glucans and Immunity: State of the Art and Future Directions. Molecular Nutrition & ood research, 65(1), 1901071. [DOI:10.1002/mnfr.201901071] [PMID] []
8. Ding, L.-N., Li, Y.-T., Wu, Y.-Z., Li, T., Geng, R., Cao, J., Zhang, W., & Tan, X.-L. (2022). Plant disease resistance-related signaling pathways: recent progress and future prospects. International Journal of Molecular Sciences, 23(24), 16200. [DOI:10.3390/ijms232416200] [PMID] []
9. El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8(4), 968-987. [DOI:10.3390/md8040968] [PMID] []
10. Elshafie, H. S., & Camele, I. (2021). Applications of absorbent polymers for sustainable plant protection and crop yield. Sustainability, 13(6), 3253. [DOI:10.3390/su13063253]
11. Feng, B., Chen, Y., Zhao, C., Zhao, X., Bai, X., & Du, Y. (2006). Isolation of a novel Ser/Thr protein kinase gene from oligochitosan-induced tobacco and its role in resistance against tobacco mosaic virus. Plant Physiology and Biochemistry, 44(10), 596-603. [DOI:10.1016/j.plaphy.2006.10.003] [PMID]
12. Fesel, P. H., & Zuccaro, A. (2016). β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genetics and Biology, 90, 53-60. [DOI:10.1016/j.fgb.2015.12.004] [PMID]
13. Firmansyah, D., & Hidayat, S. H. (2017). Use of chitosan and plant growth promoting rhizobacteria to control squash mosaic virus on cucumber plants. 11, 148-155 [DOI:10.3923/ajppaj.2017.148.155]
14. Goh, C. H., Heng, P. W. S., & Chan, L. W. (2012). Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydrate Polymers, 88(1), 1-12. [DOI:10.1016/j.carbpol.2011.11.012]
15. Han, B., Baruah, K., Cox, E., Vanrompay, D., & Bossier, P. (2020). Structure-functional activity relationship of β-glucans from the perspective of immunomodulation: a mini-review. Frontiers in Immunology, 11, 658. [DOI:10.3389/fimmu.2020.00658] [PMID] []
16. Huang, M., Wu, Z., Li, J., Ding, Y., Chen, S., & Li, X. (2023). Plant protection against viruses: An integrated review of plant immunity agents. International Journal of Molecular Sciences, 24(5), 4453. [DOI:10.3390/ijms24054453] [PMID] []
17. Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20, 1-9. [DOI:10.1007/s40502-015-0139-6]
18. Malerba, M., & Cerana, R. (2019). Recent applications of chitin-and chitosan-based polymers in plants. Polymers, 11(5), 839. [DOI:10.3390/polym11050839] [PMID] []
19. Mishra, S., Jagadeesh, K. S., Krishnaraj, P. U., & Prem, S. (2014). Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions. Australian Journal of Crop Science, 8(3), 347-355.
20. Nagorskaya, V., Reunov, A., Lapshina, L., Davydova, V., & Yermak, I. (2014). Effect of chitosan on tobacco mosaic virus (TMV) accumulation, hydrolase activity, and morphological abnormalities of the viral particles in leaves of N. tabacum L. cv. Samsun. Virologica Sinica, 29, 250-256. [DOI:10.1007/s12250-014-3452-8] [PMID] []
21. Ochoa-Meza, L. C., Quintana-Obregón, E. A., Vargas-Arispuro, I., Falcón-Rodríguez, A. B., Aispuro-Hernández, E., Virgen-Ortiz, J. J., & Martínez-Téllez, M. Á. (2021). Oligosaccharins as elicitors of defense responses in wheat. Polymers, 13(18), 3105. [DOI:10.3390/polym13183105] [PMID] []
22. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52, 347-375. [DOI:10.1146/annurev-phyto-082712-102340] [PMID]
23. Pospieszny, H., Chirkov, S., & Atabekov, J. (1991). Induction of antiviral resistance in plants by chitosan. Plant Science, 79(1), 63-68. [DOI:10.1016/0168-9452(91)90070-O]
24. Rajeswari, S., Prasanthi, T., Sudha, N., Swain, R. P., Panda, S., & Goka, V. (2017). Natural polymers: A recent review. World J. Pharm. Pharm. Sci, 6, 472-494. [DOI:10.20959/wjpps20178-9762]
25. Rendina, N., Nuzzaci, M., Scopa, A., Cuypers, A., & Sofo, A. (2019). Chitosan-elicited defense responses in cucumber mosaic virus (CMV)-infected tomato plants. Journal of plant physiology, 234, 9-17. [DOI:10.1016/j.jplph.2019.01.003] [PMID]
26. Riseh, R. S., Vazvani, M. G., & Kennedy, J. F. (2023). β-glucan-induced disease resistance in plants: A review. International Journal of Biological Macromolecules, 127043. [DOI:10.1016/j.ijbiomac.2023.127043] [PMID]
27. Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: properties and its application in agriculture in context of molecular weight. Polymers, 15(13), 2867. [DOI:10.3390/polym15132867] [PMID] []
28. Romera, F. J., García, M. J., Lucena, C., Martínez-Medina, A., Aparicio, M. A., Ramos, J., Alcántara, E., Angulo, M., & Pérez-Vicente, R. (2019). Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Frontiers in Plant Science, 10, 287. [DOI:10.3389/fpls.2019.00287] [PMID] []
29. Saberi Riseh, R., Gholizadeh Vazvani, M., Ebrahimi-Zarandi, M., & Skorik, Y. A. (2022). Alginate-induced disease resistance in plants. Polymers, 14(4), 661. [DOI:10.3390/polym14040661] [PMID] []
30. Wang, J., Wang, H.Y., Xia, X.M., Li, P.P., & Wang, K.Y. (2013). Inhibitory effect of sulfated lentinan and lentinan against tobacco mosaic virus (TMV) in tobacco seedlings. International Journal of Biological Macromolecules, 61, 264-269. [DOI:10.1016/j.ijbiomac.2013.07.005] [PMID]
31. Xiang, S., Wang, J., Wang, X., Ma, X., Peng, H., Zhu, X., Huang, J., Ran, M., Ma, L., & Sun, X. (2023). A chitosan‐coated lentinan‐loaded calcium alginate hydrogel induces broad‐spectrum resistance to plant viruses by activating Nicotiana benthamiana calmodulin‐like (CML) protein 3. Plant, Cell & Environment, 46(11), 3592-3610. [DOI:10.1111/pce.14681] [PMID]
32. Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35, 569-588. [DOI:10.1007/s13593-014-0252-3]
33. Zhao, L., Hao, X., & Wu, Y. (2015). Inhibitory effect of polysaccharide peptide (PSP) against tobacco mosaic virus (TMV). International Journal of BiologicalMmacromolecules, 75, 474-478. [DOI:10.1016/j.ijbiomac.2015.01.058] [PMID]
34. Zvereva, A. S., Klingenbrunner, M., & Teige, M. (2023). Calcium signaling: an emerging player in plant antiviral defense. Journal of Experimental Botany, erad442. [DOI:10.1093/jxb/erad442] [PMID] []

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه یاسوج دانش بیماری شناسی گیاهی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb