Volume 13, Issue 2 ((Spring and Summer) 2024)                   Plant Pathol. Sci. 2024, 13(2): 58-65 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hooshyar M A, Sadravi M, Rezaee R. (2024). The impact of four commercial biological products on Rhizoctonia root rot disease in bean. Plant Pathol. Sci.. 13(2), 58-65. doi:10.61186/pps.13.2.58
URL: http://yujs.yu.ac.ir/pps/article-1-467-en.html
Department of Plant Protection, Faculty of Agriculture, Yasouj University, Yasouj, Iran , msadravi@yu.ac.ir
Abstract:   (478 Views)
Rhizoctonia root rot, caused by the soil-borne fungus Rhizoctonia solani, is an important disease of beans, which has been reported from different parts of Iran. The disease has been reported to cause damage to up to 60% of the crop worldwide. Biological control can be a healthy and environmentally friendly method for managing plant diseases. This study was conducted to investigate the effect of four commercial biological products available in the Iranian market on growth indices and severity of Rhizoctonia root rot in beans to find a suitable method for biological control of the disease. The effect of three biological products of arbuscular mycorrhizal fungi including Funeliformis mosseae, Rhizoglomus intraradices and Mycopersica (a mixture of several mycorrhizal fungi) and the bacterium Bradyrhizobium japonicum on growth indices and severity of Rhizoctonia root rot in Kosha pinto-bean cultivar was tested under greenhouse conditions. Statistical analysis of the data from this experiment showed that these treatments had a significant effect on reducing disease severity and plant growth indices, and among them, F. mosseae and Mycopersica caused the greatest reduction in disease severity and improved plant growth indices, respectively. Therefore, the biological product of F. mosseae and Mycopersica can be used to reduce the severity of Rhizoctonia root rot disease in beans and improve its growth indices.
Full-Text [PDF 611 kb]   (245 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/10/16 | Accepted: 2024/12/20

References
1. Agrios, G. N. (2005). Plant Pathology. 5th Edition, Elsevier Academic Press, Amsterdam, Netherland, 952pp.
2. Castellanos-Morales, V., Keiser, C., Cárdenas-Navarro, R., Grausgruber, H., Glauninger, J., García-Garrido, J. M., Steinkellner, S., Sampedro, I., Hage-Ahmed, K., Illana, A., Ocampo, J. A. & Vierheilig, H. (2011). The bioprotective effect of AM root colonization against the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici in barley depends on the barley variety. Soil Biology & Biochemistry 43: 831-834. doi:10.1016/j.soilbio.2010.12.012 [DOI:10.1016/j.soilbio.2010.12.012]
3. Chandanie, W.A., Kubota, M. & Hyakumachi, M. 2009. Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Applied Soil Ecology, 41, 336-341. doi:10.1016/j.apsoil.2008.12.008 [DOI:10.1016/j.apsoil.2008.12.008]
4. Elsen, A., Declerck, S. & de Waele, D. (2001). Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11: 49-51. doi: 10.1007/s005720000077 [DOI:10.1007/s005720000077]
5. Gosling, P., Hodge, A., Goodlass, G., & Bending, G. D. (2006). Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems & Environment, 113(1-4), 17-35. doi:10.1016/j.agee.2005.09.004 [DOI:10.1016/j.agee.2005.09.004]
6. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. doi:10.1038/nrmicro797 [DOI:10.1038/nrmicro797] [PMID]
7. Hungria, M., et al. (2007). Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research, 65(2), 151-164. doi:10.1016/S0378-4290(97)00143-2 [DOI:10.1016/S0378-4290(99)00084-2]
8. Khaghani, S., Bihamta, M. R., Hosseini, S.D., Mohammadi, S.A. & Darvish, F. 2012. Genetic analysis of common bean agronomic traits in stress and non-stress conditions. African Journal of Agricultural Research, 7(6): 892-901. doi:10.5897/AJAR11.2043 [DOI:10.5897/AJAR11.2043]
9. Linderman, R. G. (2000). Effects of mycorrhizas on plant tolerance to diseases. Mycorrhiza, 10(1), 85-91. doi:10.1007/s005720000077 [DOI:10.1007/s005720000077]
10. Meena, K. K., et al. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecological Engineering, 107, 8-32. doi:10.1016/j.ecoleng.2017.06.058 [DOI:10.1016/j.ecoleng.2017.06.058]
11. Misra, V., Mall, A., and Singh, D. (2023). "Rhizoctonia Root-Rot Diseases in sugar beet: Pathogen diversity, pathogenesis and cutting-edge advancements in management research." The Microbe, 100011. doi:10.1016/j.microb.2023.100011 [DOI:10.1016/j.microb.2023.100011]
12. Nikmaram, S., Sadravi, M., Zefrehee, M. G., Nikmaram, S., Sadravi, M., & Ghaderi Zefrehee, M. (2024). The impact of three arbuscular mycorrhizal fungi on wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Plant Pathology Science, 13(1), 104-112. doi:10.61186/pps.13.1.104 (In Persian) [DOI:10.61186/pps.13.1.104]
13. Pozo, M. J., & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10(4), 393-398. doi:10.1016/j.pbi.2007.05.004 [DOI:10.1016/j.pbi.2007.05.004] [PMID]
14. Rezvanjoo, M., Sadravi, M., & Khoshroo, A. (2021). Impact of an arbuscular mycorrhizal fungus on Fusarium wilt in three tomato cultivars. Plant Pathology Science 10(2), 74-81. doi:10.52547/pps.10.2.74 (In Persian) [DOI:10.52547/pps.10.2.74]
15. Sadravi, M. (2008). Important Field Crops Diseases of Iran. Gorgan University of Agriculture and Natural Resources Press, Gorgan, Iran, 208 p. (In Persian)
16. Sadravi, M. (2012). Role of arbuscular mycorrhizal fungi in plants diseases management. Plant Pathology Science, 1(1), 1-13. doi:10.1007/978-981-16-9682-4_4 (In Persian) [DOI:10.1007/978-981-16-9682-4_4]
17. Sadravi, M. (2022). The Role of Arbuscular Mycorrhiza in Sustainable Agriculture. In: Nayak, S.K., Baliyarsingh, B., Singh, A., Mannazzu, I., Mishra, B.B. (Eds.) Advances in Agricultural and Industrial Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-16-9682-4_4 [DOI:10.1007/978-981-16-9682-4_4.]
18. Sadravi, M., Shiavi, Z., & Kazemi, S. (2024). The impact of Silver nano-colloid and Aluminum nano-oxide on Rhizoctonia root rot disease in bean. Proceeding of 25th Iranian Plant Protection Congress, Tehran, Iran, Pp: 1125-6.
19. Schwartz, H. F., Steadman, J. R. Hall,R. & Foster, R. L.(2005). Compendium of Bean Diseases. 2nd Edition, APS Press, St. Paul, Minnesota, USA, 109 pp.
20. Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis. Academic Press. doi:10.1016/B978-0-12-370526-6.X5001-6 [DOI:10.1016/B978-0-12-370526-6.X5001-6]
21. Tahmatsidou, V., O'Sullivan, J., Cassells, A. C., Voyiatzis, D. & Paroussi, G. (2006). Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria ananassa cv. Selva). Applied Soil Ecology, 32, 316-324. doi:10.1016/j.apsoil.2005.03.007 [DOI:10.1016/j.apsoil.2005.03.007]
22. Tang, C., Sun, B., Zeeshan, M., Li, J., & Zhang, X. (2023). Funneliformis mosseae-induced changes of rhizosphere microbial community structure enhance Capsicum annuum L. plant growth and fruit yield. Soil Science Society of America Journal, 87(4), 843-855. doi:10.1002/saj2.20547 [DOI:10.1002/saj2.20547]
23. Wu, W. J., Zou, Y. N., Hashem, A., Avila-Quezada, G. D., Abd_Allah, E. F., & Wu, Q. S. (2023). Rhizoglomus intraradices is more prominent in improving soil aggregate distribution and stability than in improving plant physiological activities. Agronomy, 13(5), 1427. doi:10.3390/agronomy13051427 [DOI:10.3390/agronomy13051427]
24. Zhong Qun, H., Chao Xing, H., Zhi Bin, Z., Zhi Rong, Z. & Huai Song, W. (2007). Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B-Biointerfaces 59, 128-133. doi:10.1016/j.colsurfb.2007.03.001 [DOI:10.1016/j.colsurfb.2007.03.001] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb