1. Bai, J.L., Wang, H.H., Zhang, J.M., Wu, Q.P., Mo, S.P., He, Y.L., Weng, S.Q., Yang, X.J. and Li, C.Z (2022). Postharvest quality maintenance of wax apple and guava fruits by use of a fermented broth of an ε-poly-l-lysine-producing Streptomyces strain. PLOS ONE 17(3): p.e0265457. [
DOI:10.1371/journal.pone.0265457] [
PMID] [
]
2. Bisset, K.A. and Moore, F.W. (1949). The relationship of certain branched bacterial genera. Microbiology 3(3):387-391. [
DOI:10.1099/00221287-3-3-387] [
PMID]
3. Carretero-Molina, D., Ortiz-López, F.J., Martín, J., Oves-Costales, D., Díaz, C., de la Cruz, M., Cautain, B., Vicente, F., Genilloud, O. and Reyes, F. (2019). New napyradiomycin analogues from Streptomyces sp. strain CA-271078. Marine Drugs 18(1): 22. [
DOI:10.3390/md18010022] [
PMID] [
]
4. Chevrette, M.G., Carlson, C.M., Ortega, H.E., Thomas, C., Ananiev, G.E., Barns, K.J., Book, A.J., Cagnazzo, J., Carlos, C., Flanigan, W. and Grubbs, K.J. (2019). The antimicrobial potential of Streptomyces from insect microbiomes. Nature Communications 10(1): 516. [
DOI:10.1038/s41467-019-08438-0] [
PMID] [
]
5. Chouyia, F.E., Ventorino, V. and Pepe, O. (2022). Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: A review. Frontiers in Plant Science 13:1035358. [
DOI:10.3389/fpls.2022.1035358] [
PMID] [
]
6. Cowley, M. A., Brown, W. A. and Considine, R. V. (2016). Obesity: The problem and its management. In: Jameson, J. L., De Groot, L. J., de Kretser, D. M., Giudice, L. C., Grossman, A. B., Melmed, S., Potts. Jr J. T, and Weir, G. C. (Eds.), Endocrinology: Adult & Pediatric (7th ed., pp. 468-478). [
DOI:10.1016/B978-0-323-18907-1.00026-3]
7. Dimkpa, C.O., Svatoš, A., Dabrowska, P., Schmidt, A., Boland, W. and Kothe, E. (2008). Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19-25. [
DOI:10.1016/j.chemosphere.2008.09.079] [
PMID]
8. Donald, L., Pipite, A., Subramani, R., Owen, J., Keyzers, R.A. and Taufa, T. (2022). Streptomyces: Still the biggest producer of new natural secondary metabolites, a current perspective. Microbiology Research 13(3):418-465. [
DOI:10.3390/microbiolres13030031]
9. Dong H, Guo T, Zhang W, Ying H, Wang P, Wang Y, Chen Y. (2019). Biochemical characterization of a nove azoreductase from Streptomyces sp.: Application in eco-friendly decolorization of azo dye wastewater. International Journal of Biological Macromolecules 1(140):1037-1046. [
DOI:10.1016/j.ijbiomac.2019.08.196] [
PMID]
10. Dow, L., Gallart, M., Ramarajan, M., Law, S.R. and Thatcher, L.F. (2023). Streptomyces and their specialised metabolites for phytopathogen control-comparative in vitro and in planta metabolic approaches. Frontiers in Plant Science 14:1151912. [
DOI:10.3389/fpls.2023.1151912] [
PMID] [
]
11. Drawz, S.M. and Bonomo, R.A. (2010). Three decades of β-lactamase inhibitors. Clinical Microbiology Reviews, 23(1), pp.160-201. [
DOI:10.1128/CMR.00037-09] [
PMID] [
]
12. Hamed, R.B., Gomez-Castellanos, J.R., Henry, L., Ducho, C., McDonough, M.A. and Schofield, C.J. (2013). The enzymes of β-lactam biosynthesis. Natural Product Reports, 30(1):21-107. [
DOI:10.1039/C2NP20065A] [
PMID]
13. Harir, M., Bendif, H., Bellahcene, M., Fortas, Z., Pogni, R. (2018). Streptomyces secondary metabolites. In: Enany, Sh. (Ed.) Basic Biology and Applications of Actinobacteria. First published in London, United Kingdom, by IntechOpen, 99-122. [
DOI:10.5772/intechopen.79890]
14. Islan GA, Rodenak-Kladniew B, Noacco N, Duran N, Castro GR. (2022). Prodigiosin: a promising biomolecule with many potential biomedical applications. Bioengineered 13(6):14227-14258. [
DOI:10.1080/21655979.2022.2084498] [
PMID] [
]
15. Khushboo-Kumar, P., Dubey, K.K., Usmani, Z., Sharma, M. and Gupta, V.K., (2022). Biotechnological and industrial applications of Streptomyces metabolites. Biofuels, Bioproducts and Biorefining 16(1):244-264. [
DOI:10.1002/bbb.2294]
16. Kim, H.J., Bo, A.B., Kim, J.D., Kim, Y.S., Khaitov, B., Ko, Y.K., Cho, K.M., Jang, K.S., Park, K.W. and Choi, J.S., (2020). Herbicidal characteristics and structural identification of the potential active compounds from Streptomyces sp. KRA17-580. Journal of Agricultural and Food Chemistry 68(52):15373-15380. [
DOI:10.1021/acs.jafc.0c01974] [
PMID]
17. Kim, J.D., Park, M.Y., Jeon, B.J. and Kim, B.S. (2019). Disease control efficacy of 32, 33-didehydroroflamycoin produced by Streptomyces rectiviolaceus strain DY46 against gray mold of tomato fruit. Scientific reports 9(1):13533. [
DOI:10.1038/s41598-019-49779-6] [
PMID] [
]
18. Komaki, H., (2023). Recent Progress of Reclassification of the Genus Streptomyces. Microorganisms 11(4):831. [
DOI:10.3390/microorganisms11040831] [
PMID] [
]
19. Lacey, H.J. and Rutledge, P.J., (2022). Recently discovered secondary metabolites from Streptomyces species. Molecules, 27(3):887. [
DOI:10.3390/molecules27030887] [
PMID] [
]
20. Le, K.D., Yu, N.H., Park, A.R., Park, D.J., Kim, C.J. and Kim, J.C., (2022). Streptomyces sp. AN090126 as a biocontrol agent against bacterial and fungal plant diseases. Microorganisms 10(4):791. [
DOI:10.3390/microorganisms10040791] [
PMID] [
]
21. Lyu, A., Liu, H., Che, H., Yang, L., Zhang, J., Wu, M., Chen, W. and Li, G., (2017). Reveromycins A and B from Streptomyces sp. 3-10: antifungal activity against plant pathogenic fungi in vitro and in a strawberry food model system. Frontiers in Microbiology, 8:550. [
DOI:10.3389/fmicb.2017.00550]
22. McDonald, B.R. and Currie, C.R. (2017). Lateral gene transfer dynamics in the ancient bacterial genus Streptomyces. MBio, 8(3):10-1128. [
DOI:10.1128/mBio.00644-17] [
PMID] [
]
23. Narayana, K.J.P., Kumar, K.G. and Vijayalakshmi, M. (2008). L-asparaginase production by Streptomyces albidoflavus. Indian Journal of Microbiology 48:331-336. [
DOI:10.1007/s12088-008-0018-1] [
PMID] [
]
24. Nguyen, H.T.T., Park, A.R., Hwang, I.M. and Kim, J.C. (2021). Identification and delineation of action mechanism of antifungal agents: Reveromycin E and its new derivative isolated from Streptomyces sp. JCK-6141. Postharvest Biology and Technology 182:111700. [
DOI:10.1016/j.postharvbio.2021.111700]
25. Pacios-Michelena, S., Aguilar Gonzalez, C.N., Alvarez-Perez, O.B., Rodriguez-Herrera, R., Chávez-González, M., Arredondo Valdes, R., Ascacio Valdes, J.A., Govea Salas, M. and Ilyina, A. (2021). Application of Streptomyces antimicrobial compounds for the control of phytopathogens. Frontiers in Sustainable Food Systems 5: 696518. [
DOI:10.3389/fsufs.2021.696518]
26. Palaniyandi, S.A., Yang, S.H., Zhang, L. and Suh, J.W. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology 97:9621-9636. [
DOI:10.1007/s00253-013-5206-1] [
PMID]
27. Quinn, G.A., Banat, A.M., Abdelhameed, A.M. and Banat, I.M. (2020). Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. Journal of medical microbiology 69(8):1040-1048. [
DOI:10.1186/s12967-020-02494-7] [
PMID] [
]
28. Sadeghi, A., Koobaz, P., Azimi, H., Karimi, E. and Akbari, A.R. (2017). Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl 62:805-819. [
DOI:10.1007/s10526-017-9838-4]
29. Schlimpert, S. and Elliot, M.A. (2023). The best of both worlds-Streptomyces coelicolor and Streptomyces venezuelae as model species for studying antibiotic production and bacterial multicellular development. Journal of Bacteriology, pp.e00153-23. [
DOI:10.1128/jb.00153-23] [
PMID] [
]
30. Ser, H.L., Law, J.W.F., Chaiyakunapruk, N., Jacob, S.A., Palanisamy, U.D., Chan, K.G., Goh, B.H. and Lee, L.H., (2016). Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review. Frontiers in Microbiology, 7:183344. [
DOI:10.3389/fmicb.2016.00522]
31. Sousa, J.A.D.J. and Olivares, F.L., (2016). Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chemical and Biological Technologies in Agriculture 3(1):1-12. [
DOI:10.1186/s40538-016-0073-5]
32. Suzuki, M.; Komaki, H.; Kaweewan, I.; Dohra, H.; Hemmi, H.; Nakagawa, H.; Yamamura, H.; Hayakawa, M. and Kodani, S. (2021). Isolation and structure determination of new linear azole-containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Applied Microbiology and Biotechnology 105:93-104. [
DOI:10.1007/s00253-020-11016-w] [
PMID]
33. Waksman, S.A. and Woodruff, H.B. (1940). Bacteriostatic and bactericidal substances produced by a soil Actinomyces. Proceedings of the society for Experimental Biology and Medicine 45(2):609-614. [
DOI:10.3181/00379727-45-11768]
34. Waksman, S.A. and Woodruff, H.B. (1942). Selective antibiotic action of various substances of microbial origin. Journal of bacteriology, 44(3):373-384. [
DOI:10.1128/jb.44.3.373-384.1942] [
PMID] [
]
35. Watve, M.G., Tickoo, R., Jog, M.M. and Bhole, B.D. (2001). How many antibiotics are produced by the genus Streptomyces? Archives of Microbiology 176:386-390. [
DOI:10.1007/s002030100345] [
PMID]
36. Wonglom, P., Suwannarach, N., Lumyong, S., Ito, S.I., Matsui, K. and Sunpapao, A., (2019). Streptomyces angustmyceticus NR8-2 as a potential microorganism for the biological control of leaf spots of Brassica rapa subsp. pekinensis caused by Colletotrichum sp. and Curvularia lunata. Biological Control, 138:104046. [
DOI:10.1016/j.biocontrol.2019.104046]
37. Zhao, X., Zhou, J., Tian, R. and Liu, Y. (2022). Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Frontiers in Microbiology 13:922450. [
DOI:10.3389/fmicb.2022.922450] [
PMID] [
]