Volume 13, Issue 1 ((Autumn & Winter) 2024)                   Plant Pathol. Sci. 2024, 13(1): 89-103 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousivand M. (2024). New technologies for detecting mycotoxins in plant yields and products. Plant Pathol. Sci.. 13(1), 89-103. doi:10.61186/pps.13.1.89
URL: http://yujs.yu.ac.ir/pps/article-1-432-en.html
Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran , mmousivand93@gmail.com
Abstract:   (526 Views)
Mousivand, M. (2024). New technologies for detecting mycotoxins in plant yields and products. Plant Pathology Science, 13(1), 89-103.
 
Mycotoxins are fungal secondary metabolites known as global concerns on humans and livestock health regarding to their toxicity and carcinogenicity. Increasing demand for fast, simple and low-cost detection of these compounds, especially on-site, have been lead to develop various biosensors. Although antibodies have been the most widely used diagnostic probes in biosensors for several decades but monoclonal antibody production is difficult for mycotoxins as small and non-immunogenic molecules. Therefore, aptameric probes have been emerged as a new technology for mycotoxin monitoring. Aptamers are single-stranded oligonucleotides that detect target molecule by folding into a three-dimensional conformation, with a binding affinity equal to that of monoclonal antibodies. Aptamers have been considered as the most important competitors of antibodies for biosensor development regarding to their significant advantages in terms of no limiting in target type, smaller size, higher stability, synthetic nature and low cost. Exploiting aptameric probes in biosensor designing have been led to aptasensors development for specific and sensitive tracking of target molecules, and mycotoxins. The aptameric probes, experimental screening methodology, various aptasensors and their applications in detecting mycotoxins has been described, and discussed in this article. 
Full-Text [PDF 1025 kb]   (406 Downloads)    
Type of Study: Review | Subject: Special
Received: 2024/03/4 | Accepted: 2024/08/8

References
1. Barthelmebs, L., Jonca, J., Hayat, A., Prieto-Simon, B., & Marty, J.L. (2011). Enzyme-Linked Aptamer Assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine. Food Control, 22(5),737-743. [DOI:10.1016/j.foodcont.2010.11.005]
2. Castillo, G., Spinella, K., Poturnayová, A., Šnejdárková, M., Mosiello, L., & Hianik, T. (2015). Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control, 52,9-18. [DOI:10.1016/j.foodcont.2014.12.008]
3. Chauhan, R., Singh, J., Sachdev, T., Basu, T., & Malhotra, B.D. (2016). Recent advances in mycotoxins detection. Biosensors and Bioelectronics, 81,532-545. [DOI:10.1016/j.bios.2016.03.004] [PMID]
4. Chen, J., Fang, Z., Liu, J., & Zeng, L. (2012). A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer. Food Control, 25, 555-560. [DOI:10.1016/j.foodcont.2011.11.039]
5. Chen, X., Huang, Y., Duan, N., Wu, S., Xia, Y., Ma, X., & Wang, Z. (2014). Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide. Journal of Agricultural and Food Chemistry, 62(42),10368-10374. [DOI:10.1021/jf5032058] [PMID]
6. Chen, X., Huang, Y., Duan, N., Wu, S., Ma, X., Xia, Y., & Wang, Z. (2013). Selection and identification of ssDNA aptamers recognizing zearalenone. Analytical and Bioanalytical Chemistry, 405,6573-6581. [DOI:10.1007/s00216-013-7085-9] [PMID]
7. Chen, X., Huang, Y., Ma, X., Jia, F., Guo, X., & Wang, Z. (2015). Impedimetric aptamer-based determination of the mold toxin fumonisin B1. Microchimica Acta, 182,1709-1714. [DOI:10.1007/s00604-015-1492-x]
8. Cigić, I.K., & Prosen, H. (2009). An overview of conventional and emerging analytical methods for the determination of mycotoxins. International Journal of Molecular Sciences, 10(1), 62-115. [DOI:10.3390/ijms10010062] [PMID] []
9. Costa, M.N., Veigas, B., Jacob, J.M., Santos, D.S., Gomes, J., Baptista, P.V., & Fortunato, E. (2014). A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology, 25(9),094006. [DOI:10.1088/0957-4484/25/9/094006] [PMID]
10. Cruz-Aguado, J.A., & Penner, G. (2008). Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Analytical Chemistry, 80(22), 8853-8855. [DOI:10.1021/ac8017058] [PMID]
11. Dors, G.C., Primel, E.G., Badiale-Furlong, E., Santos Hackbart, H.C., Garda-Buffon, J., Santos Oliveira, M., & Feddern, V. (2011). Aflatoxins: contamination, analysis and control (pp. 415-438). INTECH Open Access Publisher.
12. Frost, N. (2015). Fumonisin B1 aptamer optimization and progress towards mycotoxin nanoaptasensors (Doctoral dissertation, Carleton University).
13. Guo, Z., Ren, J., Wang, J., & Wang, E. (2011). Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta. 85(5), 2517-2521. [DOI:10.1016/j.talanta.2011.08.015] [PMID]
14. Ikebukuro, K., Okumura, Y., Sumikura, K., & Karube, I. (2005). A novel method of screening thrombin-inhibiting DNA aptamers using an evolution-mimicking algorithm. Nucleic Acids Research. 33(12), e108-e108. [DOI:10.1093/nar/gni108] [PMID] []
15. Kensler, T.W., Roebuck, B.D., Wogan, G.N., & Groopman, J.D. (2011). Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicological Sciences, 120(Suppl_1), S28-S48. [DOI:10.1093/toxsci/kfq283] [PMID] []
16. Lim, Y.C., Kouzani, A.Z., & Duan, W. (2010). Aptasensors: a review. Journal of Biomedical Nanotechnology, 6(2), 93-105. [DOI:10.1166/jbn.2010.1103] [PMID]
17. Liu, J., Guan, Z., Lv, Z., Jiang, X., Yang, S., & Chen, A. (2014). Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Biosensors and Bioelectronics, 52, 265-270. [DOI:10.1016/j.bios.2013.08.059] [PMID]
18. Luan, Y., Chen, Z., Xie, G., Chen, J., Lu, A., Li, C., & Wang, J. (2015). Rapid visual detection of aflatoxin B1 by label-free aptasensor using unmodified gold nanoparticles. Journal of Nanoscience and Nanotechnology, 15(2),1357-1361. [DOI:10.1166/jnn.2015.9225] [PMID]
19. Ma, X., Wang, W., Chen, X., Xia, Y., Wu, S., Duan, N., & Wang, Z. (2014).Selection, identification, and application of Aflatoxin B1 aptamer. European Food Research and Technology. 238, 919-925. [DOI:10.1007/s00217-014-2176-1]
20. Malhotra, S., Pandey, A.K., Rajput, Y.S., & Sharma, R. (2014). Selection of aptamers for aflatoxin M1 and their characterization. Journal of Molecular Recognition, 27(8), 493-500. [DOI:10.1002/jmr.2370] [PMID]
21. McKeague, M., De Girolamo, A., Valenzano, S., Pascale, M., Ruscito, A., Velu, R., & DeRosa, M.C. (2015). Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation. Analytical Chemistry, 87(17), 8608-8612. [DOI:10.1021/acs.analchem.5b02102] [PMID]
22. McKeague, M., Velu, R., Hill, K., Bardóczy, V., Mészáros, T., & DeRosa, M.C. (2014). Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins. 6(8), 2435-2452. [DOI:10.3390/toxins6082435] [PMID] []
23. McKeague, M., Bradley, C.R., De Girolamo, A., Visconti, A., Miller, J.D., & DeRosa, M.C. (2010). Screening and initial binding assessment of fumonisin B1 aptamers. International Journal of Molecular Sciences, 11(12), 4864-4881. [DOI:10.3390/ijms11124864] [PMID] []
24. Moradi, M., & Fani, S. R. (2018). A review of aflatoxin in pistachio and control strategies. Plant Pathology Science, 7(2), 22-33.(In Persian) [DOI:10.29252/pps.7.2.22]
25. Mousivand, M., Anfossi, L., Bagherzadeh, K., Barbero, N., Mirzadi-Gohari, A., & Javan-Nikkhah, M. (2020a). In silico maturation of affinity and selectivity of DNA aptamers against aflatoxin B1 for biosensor development. Analytica Chimica Acta, 1105, 178-186. [DOI:10.1016/j.aca.2020.01.045] [PMID]
26. Mousivand, M., Bagherzadeh, K., Anfossi, L., & Javan‐Nikkhah, M. (2022). Key criteria for engineering mycotoxin binding aptamers via computational simulations: Aflatoxin B1 as a case study. Biotechnology Journal, 17(2), 2100280. [DOI:10.1002/biot.202100280] [PMID]
27. Mousivand, M., Javan-Nikkhah, M., Anfossi, L., Di Nardo, F., Salina, M., & Bagherzadeh, K. (2023). High performance aptasensing platform development through in silico aptamer engineering for aflatoxin B1 monitoring. Food Control, 145, 109418. [DOI:10.1016/j.foodcont.2022.109418]
28. Mousivand, M., Javan-Nikkhah, M., Bagherzadeh, K., Anfossi, L., & Mirzadi Gohari, A. (2020b). Introducing truncated DNA aptamer as a new molecular probe for aflatoxin B1 detection using computational simulation techniques. Iranian Journal of Plant Pathology, 56, 99-117.(In Persian)
29. Pandey, A.K., Rajput, Y.S., Singh, D., & Sharma, R. (2018). Prediction of shorter oligonucleotide sequences recognizing aflatoxin M1. Biotechnology and Applied Biochemistry. 65(3), 397-406. [DOI:10.1002/bab.1586] [PMID]
30. Potyrailo, R.A., Conrad, R.C., Ellington, A.D., & Hieftje. G. M. (1998). Adapting selected nucleic acid ligands (aptamers) to biosensors. Analytical Chemistry, 70(16), 3419-3425. [DOI:10.1021/ac9802325] [PMID]
31. Quesada-González, D., & Merkoçi, A. (2015). Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 73, 47-63. [DOI:10.1016/j.bios.2015.05.050] [PMID]
32. Rouah-Martin, E., Mehta, J., Van Dorst, B., De Saeger, S., Dubruel, P., Maes, B.U., & Robbens, J. (2012). Aptamer-based molecular recognition of lysergamine, metergoline and small ergot alkaloids. International Journal of Molecular Sciences, 13(12), 17138-17159. [DOI:10.3390/ijms131217138] [PMID] []
33. Ruscito, A., & DeRosa, M.C.(2016). Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in Chemistry, 4, 14. [DOI:10.3389/fchem.2016.00014] [PMID] []
34. Schütze, T., Wilhelm, B., Greiner, N., Braun, H., Peter, F., Mörl, M., & Glökler, J. (2011). Probing the SELEX process with next-generation sequencing. PloS one, 6(12), e29604. [DOI:10.1371/journal.pone.0029604] [PMID] []
35. Shkembi, X., Svobodova, M., Skouridou, V., Bashammakh, A.S., Alyoubi, A.O., & O'Sullivan, C.K. (2022). Aptasensors for mycotoxin detection: A review. Analytical Biochemistry. 644,114156. [DOI:10.1016/j.ab.2021.114156] [PMID]
36. Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249(4968), 505-510. [DOI:10.1126/science.2200121] [PMID]
37. Wang, L., Chen, W., Ma, W., Liu, L., Ma, W., Zhao, Y., & Xu, C. (2011). Fluorescent strip sensor for rapid determination of toxins. Chemical Communications, 47(5), 1574-1576. [DOI:10.1039/C0CC04032K] [PMID]
38. Wang, J., & Zhou, H.S. (2008). Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Analytical Chemistry, 80(18), 7174-7178. [DOI:10.1021/ac801281c] [PMID]
39. Wu, S., Liu, L., Duan, N., Li, Q., Zhou, Y., & Wang, Z. (2018). Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. Journal of Agricultural and Food Chemistry, 66(8), 1949-1954. [DOI:10.1021/acs.jafc.7b05326] [PMID]
40. Wu, S., Liu, H., & Liu, Y. (2012). Deoxynivalenol nucleic acid aptamer and application thereof. Invention Patent, CN102559686.
41. Wu, Z., Xu, E., Chughtai, M.F., Jin, Z., & Irudayaraj, J. (2018). Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles. Food Chemistry, 230, 673-680. [DOI:10.1016/j.foodchem.2017.03.100] [PMID]
42. Yue, S., Jie, X., Wei, L., Bin, C., Dou, W., Yi, Y., & TieSong, Z. (2014). Simultaneous detection of Ochratoxin A and fumonisin B1 in cereal samples using an aptamer-photonic crystal encoded suspension Array. Analytical Chemistry, 86(23), 11797-11802. [DOI:10.1021/ac503355n] [PMID]
43. Zhou, W., Kong, W., Dou, X., Zhao, M., Ouyang, Z., & Yang, M. (2016). An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. Journal of Chromatography B, 1022, 102-108. [DOI:10.1016/j.jchromb.2016.04.016] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb