Volume 9, Issue 1 (3-2020)                   pps 2020, 9(1): 101-107 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghan A A, Ghaderi R. Application of seaweeds in plant disease management. pps. 2020; 9 (1) :101-107
URL: http://yujs.yu.ac.ir/pps/article-1-301-en.html
Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran , rghaderi@shirazu.ac.ir
Abstract:   (1355 Views)
Dehghan AA, Ghaderi R (2020) Application of seaweeds in plant diseases management. Plant Pathology Science 9(1):101-107.         DOI: 10.2982/PPS.9.1.101.
Algae are the most important plant growth stimulants due to their high content of minerals, amino acids, vitamins and growth regulators such as auxin, cytokinin and gibberellin. Use of these stimuli in crops can improve rooting, yield, photosynthetic capacity and their resistance to pathogens. Application of algae (mainly seaweeds) against various plant diseases including bacterial, fungal, viral and nematode diseases as well as pests has been proven. Seaweeds are used as a powder or extract mixed with soil, or foliar spray to control of plant diseases. They are usually involved in controlling plant pathogens by inducing plant resistance, antagonistic activity by induced activity of other microorganisms, and enhancing plant growth. In general, seaweeds can be applied as biofertilizers, biostimulators and soil amendments in integrated plant diseases management programs.
Full-Text [PDF 458 kb]   (347 Downloads)    
Type of Study: EXTENTIONAL | Subject: Special

1. Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions 16:1118-1128. [DOI:10.1094/MPMI.2003.16.12.1118]
2. Baloch GN, Tariq S, Ehteshamul-Haque S, Athar M, Sultana V , Ara J (2013) Management of root diseases of eggplant and watermelon with the application of asafoetida and seaweeds. Journal of Applied Botany and Food Quality 86:138-142.
3. Bileva T (2013) Influence of green algae Chlorella vulgaris on infested with Xiphinema index grape seedlings. Journal of Earth Science Climate Change 4:136-138. [DOI:10.4172/2157-7617.1000136]
4. Borbón H, Herrera JM, Calvo M, Trimino H, Sierra L, Soto R , Vega I (2012) Antimicrobial activity of most abundant marine macroalgae of the Caribbean coast of Costa Rica. Journal of Asian Scientific Research 2:292-299.
5. De Waele D, Jordaan EM (1988) Plant-parasitic nematodes on field crops in South Africa. 1. Maize. Revue de Nématologie 11:65-74.
6. Feldman SC, Reynaldi S, Stortz CA, Cerezo AS , Damonte EB (1999) Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine 6:335-340. [DOI:10.1016/S0944-7113(99)80055-5]
7. Galal HRM, Salem WM, Nasr El-Deen F (2011) Biological control of some pathogenic fungi using marine algae. Research Journal of Microbiology 6:645-57. [DOI:10.3923/jm.2011.645.657]
8. Hamed SM, El-Rhman AAA, Abdel-Raouf N , Ibraheem IB (2018) Role of marine macroalgae in plant protection and improvement for sustainable agriculture technology. Journal of Basic and Applied Sciences 7:204-210. [DOI:10.1016/j.bjbas.2017.08.002]
9. Hamouda RA, El-Ansary MSM (2013) Biocontrol of root knot nematode, Meloidogyne incognita infected banana plants by Cyanobacteria. Egyptian Journal of Agroentomology, 12:113-129.
10. Hernandez-Herrera RM, Santacruz-Ruvalcaba F, Ruiz-López MA, Norrie J, Hernández-Carmona G (2014a) Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology 26:619-628. [DOI:10.1007/s10811-013-0078-4]
11. Hernandez-Herrera RM, Virgen-Calleros G, Ruiz-López M, Zañudo-Hernández J, Délano-Frier JP, Sánchez-Hernández C (2014b) Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. Journal of Applied Phycology 26:1607-1614. [DOI:10.1007/s10811-013-0193-2]
12. Ibraheem BMI, Abdel-Raouf N, Mohamed HM, Yehia R, Hamed SM (2017) Impact of the microbial suppression by using the brown alga Dictyota dichotoma extract. Egyptian Journal of Botany (The 7th International Conference on Plant and Microbial Biotechnology), 205-214. [DOI:10.21608/ejbo.2017.912.1072]
13. Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation 28:386-399. [DOI:10.1007/s00344-009-9103-x]
14. Kumar CS, Sarada DV , Rengasamy R (2008) Seaweed extracts control the leaf spot disease of the medicinal plant Gymnema sylvestre. Indian Journal of Science and Technology 1:1-5. [DOI:10.17485/ijst/2008/v1i3/8]
15. Morgan KT, Tarjan AC (1980) Management of sting nematode on centipede grass with kelp extracts. Proceedings of the Florida State Horticultural Society 93:97-99.
16. Nagorskaia VP, Reunov AV, Lapshina LA, Ermak IM , Barabanova AO (2008) Influence of kappa/beta-carrageenan from red alga Tichocarpus crinitus on development of local infection induced by tobacco mosaic virus in Xanthi-nc tobacco leaves. Izvestiia Akademii nauk Seriia biologicheskaia 3:360-364. [DOI:10.1134/S1062359008030126]
17. Ngala BM, Valdes Y, Dos Santos G, Perry RN , Wesemael WM (2016) Seaweed-based products from Ecklonia maxima and Ascophyllum nodosum as control agents for the root-knot nematodes Meloidogyne chitwoodi and Meloidogyne hapla on tomato plants. Journal of Applied Phycology 28:2073-2082. [DOI:10.1007/s10811-015-0684-4]
18. Paracer S, Tarjan AC, Hodgson LM (1987) Effective use of marine algal products in the management of plant-parasitic nematodes. Journal of Nematology 19:194-200.
19. Pardee KI, Ellis P, Bouthillier M, Towers GH , French CJ (2004) Plant virus inhibitors from marine algae. Canadian Journal of Botany 82:304-309. [DOI:10.1139/b04-002]
20. Radwan MA, Farrag SAA, Abu-Elamayem MM , Ahmed NS (2012) Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Applied Soil Ecology 56:58-62. [DOI:10.1016/j.apsoil.2012.02.008]
21. Ramkissoon A, Ramsubhag A , Jayaraman J (2017) Phytoelicitor activity of three Caribbean seaweed species on suppression of pathogenic infections in tomato plants. Journal of Applied Phycology 29:3235-3244. [DOI:10.1007/s10811-017-1160-0]
22. Sharma HS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology 26:465-490. [DOI:10.1007/s10811-013-0101-9]
23. Sohrabipour J, Rabiei R (2017) Algal vegetation in southern coastline of Iran. Iran Nature 2:62-68.
24. Sultana V, Baloch GN, Ara J, Ehteshamul-Haque S, Tariq RM , Athar M (2012) Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. Journal of Applied Botany and Food Quality 84:162.
25. Wu Y, Jenkins T, Blunden G, von Mende N, Hankins SD (1998) Suppression of fecundity of the root-knot nematode, Meloidogyne javanica, in monoxenic cultures of Arabidopsis thaliana treated with an alkaline extract of Ascophyllum nodosum. Journal of Applied Phycology 10:91. [DOI:10.1023/A:1008067420092]
26. Zhao L, Feng C, Wu K, Chen W, Chen Y, Hao X, Wu Y (2017) Advances and prospects in biogenic substances against plant virus: A review. Pesticide Biochemistry and Physiology 135:15-26. [DOI:10.1016/j.pestbp.2016.07.003]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | University of Yasouj Journals System Plant Pathology Science

Designed & Developed by : Yektaweb