Volume 5, Issue 2 (8-2016)                   Plant Pathol. Sci. 2016, 5(2): 71-80 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Etminani F, Etminani A, Harighi B. (2016). Role of Endophytic Bacteria in Sustainable Agriculture. Plant Pathol. Sci.. 5(2), 71-80.
URL: http://yujs.yu.ac.ir/pps/article-1-120-en.html
, Department of Plant Protection, University of Kurdistan, Sanandaj, Iran , bharighi@uok.ac.ir
Abstract:   (10927 Views)

Etminani F., Etminani A. & Harighi B. 2016. Role of endophytic bacteria in sustainable agriculture. Plant Pathology Science 5(2):71-80.

Food security is one of the most challenges in the world. This problem is more important in regions with unsuitable agricultural system conditions. Use of chemical pesticides to protect crops against plant pathogens and insects has been increasing over the last decades. Chemical fertilizers increase the yield but usually reduce soil fertility and harm to environment. Therefore, application of endophytic bacteria as alternative fertilizers can be used in sustainable agriculture without affecting environment. Endophytic bacteria use various mechanisms to enhance plant growth such as nitrogen fixation, solubilization of phosphate, production of phytohormones like auxin, cytokinin and gibberellin, production of Hydrogen cyanide and Siderophore as an antimicrobial compounds to control of soilborne disease and increasing plant resistance to abiotic disorders. Knowledge about endophytic bacteria- plant interaction can provide effective strategy to develop sustainable agriculture in order to ensure yield improvement without affecting environment.

Full-Text [PDF 234 kb]   (1589 Downloads)    
Type of Study: Extentional | Subject: Special
Received: 2015/06/22 | Accepted: 2016/02/10

References
1. Backman P. A. & Sikora R. A. 2008. Endophytes: An emerging tool for biological control. Biological Control 46:1–3. [DOI:10.1016/j.biocontrol.2008.03.009]
2. Baldani J. I. & Baldani V. L. D. 2005. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciências 77:549-579. [DOI:10.1590/S0001-37652005000300014]
3. Biswas J. C., Ladha J. K., Dazzo F. B., Yanni Y. G. & Rolfe B. G. 2000. Rhizobial inoculation influences seedling vigor and yield of rice. Agronomy Journal 92:880–886. [DOI:10.2134/agronj2000.925880x]
4. Bolan N. S., Currie L. D. & Baskaran S. 1996. Assessment of the influence of phosphate fertilizers on the microbial activity of pasture soils. Biology and Fertility of Soils 21:284–292. [DOI:10.1007/BF00334905]
5. Bottini R., Cassấn F. & Piccoli P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology 65:497–503. [DOI:10.1007/s00253-004-1696-1]
6. Chandini M. T. & Dennis P. 2002. Microbial activity, nutrient dynamics and litter decomposition in a Canadian rocky mountain pine forest as affected by N and P fertilizers. Forest Ecology and Management 159:187–201. [DOI:10.1016/S0378-1127(01)00432-7]
7. Compant S., Duffy B., Nowak J., Clément C. & Barka E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology 71:4951–4959. [DOI:10.1128/AEM.71.9.4951-4959.2005]
8. De-Bashan L. E., Hernandez J. P. & Bashan Y. 2012. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation– A comprehensive evaluation. Applied Soil Ecology 61:171–189. [DOI:10.1016/j.apsoil.2011.09.003]
9. Dobereiner J., Reis V. M., Paula M. A. & Olivares F. 1993. Endophytic diazotrophs in sugarcane cereals and tuber crops. Pp. 671-674. In: R. Palacios J. Moor. & W.E. Newton (ed.). New Horizons in Nitrogen Fixation. Kluwer, Dordrecht.
10. Lugtenberg B. & Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63:541–556. [DOI:10.1146/annurev.micro.62.081307.162918]
11. Oliveira A. L. M., Urquiaga S., Döbereiner J. & Baldani J. I. 2002. The effect of inoculating endophytic N2-fixing bacteria on micro-propagated sugarcane plants. Plant & Soil 242:205–215. [DOI:10.1023/A:1016249704336]
12. Prabhat N. J., Garima G., Prameela J. & Rajesh M. 2013. Association of rhizospheric/endophytic bacteria with Plants: A Potential gateway to sustainable agriculture. Greener Journal of Agricultural Sciences 3:073-084.
13. Quiquampoix H. & Mousain D. 2005. Enzymatic hydrolysis of organic phosphorus. Pp. 89-112. In: B.L. Turner, E. Frossard & D.S. Baldwin (eds.). Organic Phosphorus in the Environment. CAB International, Wallingford, UK. [DOI:10.1079/9780851998220.0089]
14. Rajkumar M., Ae N., Prasad M. N. & Freitas H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology 28:142-149. [DOI:10.1016/j.tibtech.2009.12.002]
15. Reinhold-Hurek B. & Hurek T. 2011. Living inside plants: bacterial endophytes. Current Opinion in Plant Biology 14:435–443. [DOI:10.1016/j.pbi.2011.04.004]
16. Rothballer M., Eckert B., Schmid M., Fekete A., Schloter M., Lehner A., Pollmann S. & Hartmann A. 2008. Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. Federation of European Microbiological Societies 66:85–95. [DOI:10.1111/j.1574-6941.2008.00582.x]
17. Sims J. T. & Pierzynski G. M. 2005. Chemistry of phosphorus in soils. Pp. 151–192. In: A. M. Tabatabai. & D. L. Sparks (ed.). Chemical processes in soil. SSSA book series 8. SSSA, Madison.
18. Tian B., Yang J. & Zhang K. 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbial Ecology 61:197–213. [DOI:10.1111/j.1574-6941.2007.00349.x]
19. Van Loon L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology 119:243–254. [DOI:10.1007/s10658-007-9165-1]
20. Yang J., Kloepper J. W. & Ryu C. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Science 14:1-4. [DOI:10.1016/j.tplants.2008.10.004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb