Volume 5, Issue 2 (8-2016)                   Plant Pathol. Sci. 2016, 5(2): 90-100 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi L, Jamali S. (2016). Molecular Plants Defense Mechanisms Against Nematodes. Plant Pathol. Sci.. 5(2), 90-100.
URL: http://yujs.yu.ac.ir/pps/article-1-117-en.html
Professor of Plant Pathology, Faculty of Agriculture, University of Guilan, Guilan, Iran , jamali_s2002@yahoo.com
Abstract:   (10362 Views)

Sadeghi  L. & Jamali  S. 2016. Molecular plants defense mechanisms against nematodes. Plant Pathology Science 5(2):90-100.

Plant  parasitic  nematodes can devastate a wide range of  crop  plants. They are obligate parasites and have evolved compatible parasitic relationship with their host plants to obtain nutrients that are necessary to support their development and reproduction. Suppression of host defense is a key step for pathogenesis in the compatible interaction. Plant defense response is activated from the moment a nematode penetrates the plant root. Stylet and secretions of esophageal glands play central roles at during invasion to host, migration inside the roots and establishment of feeding site on host cells. New findings demonstrate that secretions of esophageal  glands of  some  nematodes as  effectors deliver  into the apoplast and cytoplasm of host cells to active plant defense responses in resistant host. Molecular  plants defense mechanisms against nematodes described in this paper.

Full-Text [PDF 187 kb]   (2824 Downloads)    
Type of Study: Extentional | Subject: Special
Received: 2015/06/10 | Accepted: 2016/01/12

References
1. Bedford L., Paine S, Sheppard P. W., Mayer R. J. & Roelofs J. 2010. Assembly, structure and function of the 26S proteasome. Trends in Cell Biology 20:391–401. [DOI:10.1016/j.tcb.2010.03.007]
2. Chronis D., Chen S., Lu S., Hewezi T., Carpenter S. C. D, Loria R., Baum T. J. & Wang X. 2013. A ubiquitin carboxyl extension protein secreted from a plant parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. The Plant Journal 74:185–196. [DOI:10.1111/tpj.12125]
3. Davies K. G. & Curtis R. H. C. 2011. Cuticle surface coat of plant-parasitic nematodes. Annual Review of Phytopathology 49:135–56. 4. Elling A. A., Davis E. L., Hussey R. S. & Baum T. J. 2007. Active uptake of cyst nematode parasitism proteins into the plant cell nucleus. International Journal for Parasitology 37:1269-1279. https://doi.org/10.1016/j.ijpara.2007.03.012 [DOI:10.1146/annurev-phyto-121310-111406]
4. Fuller V. L., Lilley C.J. & Urwin P. E. 2008. Nematode resistance. New Phytologist 180:27–44. [DOI:10.1111/j.1469-8137.2008.02508.x]
5. Goverse A. & G. Smant. 2014. The Activation and Suppression of Plant Innate Immunity by Parasitic Nematodes. Annual Review of Phytopathology 52:12.1–12.23.
6. Haegeman A., Jones J. T. & Danchin E. G. J. 2011. Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Mol. Plant-Microbe Interaction 24:879–87. [DOI:10.1094/MPMI-03-11-0055]
7. Heath M.C. 2000. Hypersensitive response-related death. Plant Molecular Biology 44:321–334. [DOI:10.1023/A:1026592509060]
8. Heil M. 2009. Damaged-self recognition in plant herbivore defence. Trends Plant Science 14:356–363. [DOI:10.1016/j.tplants.2009.04.002]
9. Henkle-Duhrsen K. & Kampkotter A. 2001. Antioxidant enzyme families in parasitic nematodes. Molecular and Biochemical Parasitology 114:129–142. [DOI:10.1016/S0166-6851(01)00252-3]
10. Hewezi T., Howe P., Maier T. R., Hussey R. S., Mitchum M. G., Davis E. L. & Baum T. J. 2008. Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: Cooperative cell wall modification during parasitism. Plant Cell 20:3080-3093. [DOI:10.1105/tpc.108.063065]
11. Hewezi T. & Baum T. J. 2013. Manipulation of plant cells by cyst and root-knot nematode effectors. Molecular Plant-Microbe Interactions 26:9-16. [DOI:10.1094/MPMI-05-12-0106-FI]
12. Hogenhout S. A., Van der Hoorn R. A. L., Terauchi R., & Kamoun S. 2009. Emerging Concepts in Effector Biology of Plant-Associated Organisms. Molecular Plant-Microbe Interactions 22:115-122. [DOI:10.1094/MPMI-22-2-0115]
13. Jones J. D. G. & Dangl J. L. 2006. The plant immune system. Nature 444: 323–329. [DOI:10.1038/nature05286]
14. Jones J.T., Kumar A., Pylypenko L.A., Thirugnanasambandam A. & Castelli L. 2009. Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Molecular Plant Pathology 10:815–28. [DOI:10.1111/j.1364-3703.2009.00585.x]
15. Jones J.,Gheysen G. & Fenoll C. 2011. Genomics and Molecular Genetics of Plant–Nematode Interactions. London, UK: Springer Science & Business Media. [DOI:10.1007/978-94-007-0434-3]
16. Lotze M. T., Zeh H. J., Rubartelli A., Sparvero L. J., Amoscato A. A., Washburn N. R., Devera M.E., Liang X., Tör M. & Billiar T. 2007. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunological Reviews 220:60-81. [DOI:10.1111/j.1600-065X.2007.00579.x]
17. Mitchum M. G., Hussey R.S., Baum T. J., Xiaohong W., Axel A. Elling, M. W. & Davis E. L. 2013. Nematode effector proteins: an emerging paradigm of parasitism. New Phytologist 199:879–894. [DOI:10.1111/nph.12323]
18. Quentin M., Abad P. & Favery B. 2013. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Frontiers in Plant Science 4:1-7. [DOI:10.3389/fpls.2013.00053]
19. Rehman S., Postma W., Tytgat T., Prins P. & Qin L. 2009. A secreted SPRY domain-containing protein (SPRYSEC) from the plant-parasitic nematode Globodera rostochiensis interacts with a CC-NBLRR protein from a susceptible tomato. Molecular Plant-Microbe Interactions 22:330–40. [DOI:10.1094/MPMI-22-3-0330]
20. Reinbothe C., Springer A., Samol I. & Reinbothe S. 2009. Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. Federation of European Biochemical Societies 276:4666–4681. [DOI:10.1111/j.1742-4658.2009.07193.x]
21. Shirsekar G., Dai L., Hu Y., Wang X., Zeng L. & Wang G. L. 2010. Role of ubiquitination in plant innate immunity and pathogen virulence. Journal of Plant Biology 53:10–18. [DOI:10.1007/s12374-009-9087-x]
22. Torres M. A., Jones J. D. G. & Dangl J. L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiology 141:373–78. [DOI:10.1104/pp.106.079467]
23. Tytgat T., Vanholme B., De Meutter J. & Claeys G. 2004. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes. Molecular Plant-Microbe Interactions 17:846-852. [DOI:10.1094/MPMI.2004.17.8.846]
24. Zhang L., Davies L. J. & Elling A. A. 2015. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in plants. Molecular Plant Pathology 161:48-60. [DOI:10.1111/mpp.12160]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb