Volume 5, Issue 2 (8-2016)                   pps 2016, 5(2): 63-70 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gerayeli N, Baghaee Ravari S. The Biological Role of Bacteriocins of Gram-Negative Bacteria. pps. 2016; 5 (2) :63-70
URL: http://yujs.yu.ac.ir/pps/article-1-105-en.html
, Department of Plant Protection, Faculty of Agriculture Ferdowsi University of Mashhad, Mashhad, Iran , s.baghaee@ferdowsi.um.ac.ir
Abstract:   (5358 Views)

Gerayeli N. & Baghaee-Ravari S. 2016. The  biological  role of bacteriocins of gram-negative bacteria. Plant Pathology Science 5(2): 63-70.

Bacteriocins are a kind of antimicrobial peptides  or  proteins, produced by some gram-negative bacteria, for competition for space and resources, which can kill or inhibit  closely-related  bacteria. The producer bacterium is immune to these  material by specific immunity proteins. Bacteriocins vary in size, microbial targets, mode of action and immunity mechanism. So  far  lots of  bacteriocins  that produced by  specific isolates of gram-negative bacteria have been identified, which often have a high  molecular  weight. In this paper, mode of production,  and  mechanisms of  action of  bacteriocins, and  their  role  in  management  of  plants bacterial diseases, described.

Full-Text [PDF 163 kb]   (734 Downloads)    
Type of Study: Research | Subject: Special

1. Burton J. P.,Wescombe P. A., Macklaim J. M., Chai M. H., Macdonald K. & Hale J. D. 2013. Persistence of the oral probiotic Streptococcussali- variusM18 is dose dependent and mega plasmid transfer can augment their bacteriocin production and adhesion characteristics. Plos One 8:e65991. [DOI:10.1371/journal.pone.0065991]
2. Cascales E., Buchanan S. K., Duche D., Kleanthous C., Lloubès R. & Postle K. 2007. Colicinbiology. Microbiology and Molecular Biology Reviews 71:158–229. [DOI:10.1128/MMBR.00036-06]
3. Chan Y., Wu J., Wu H., Tzeng K., Chuang D. 2011. Cloning, purification, and functional characterization of Carocin S2, a ribonuclease bacteriocin produced by Pectobacterium carotovorum. BMC Microbiology 11:1. [DOI:10.1186/1471-2180-11-99]
4. Chavan M., Rafi H., Wertz J., Goldstone C. & Riley M. A. 2005. Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification in Klebsiella. Journal of Molecular Evolution 60:546–556. [DOI:10.1007/s00239-004-0263-9]
5. Chuang D. Y., Chien Y. C. & Wu H. P. 2007. Cloning and expression of the Erwiniacarotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin, carocin S1. Journal of Bacteriology 189:620–626. [DOI:10.1128/JB.01090-06]
6. Collin F., Thompson R. E., Jolliffe K. A., Payne R. J. & Maxwell A. 2013. Fragment soft hebacterial toxin microcin B17 asgyrase poisons. Plos One 8:e61459. [DOI:10.1371/journal.pone.0061459]
7. Cotter P. D., Hill C., Ross R. P. 2005a. Bacterial lantibiotics: strategies to improve therapeutic potential. Current Protein and Peptide Science 6:61–75. [DOI:10.2174/1389203053027584]
8. Cotter P. D., Hill C. & Ross R. P. 2005b. Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology 3:777–788. [DOI:10.1038/nrmicro1273]
9. Dimov S., Ivanova P., Harizanova N. & Ivanova I. 2005. Bioactive peptides used by bacteriain the concurrence for the ecological niche: eneral classification and mode of action (overview). Biotechnology & Biotechnological Equipment 3:3–22. [DOI:10.1080/13102818.2005.10817185]
10. Grinter R., Milner J., & Walker D. 2012. Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in Pectobacterium spp. PLos One 7:e33033. [DOI:10.1371/journal.pone.0033033]
11. Ito Y., Kawai Y.,Arakawa K., Honme Y.,Sasaki T. & Saito T. 2009. Conjugative plasmid from Lactobacillus gasseri LA39 that carries genes for production of and immunity to the circular bacteriocin gassericin A. Applied and Environmental Microbiology 75:6340–6351. [DOI:10.1128/AEM.00195-09]
12. Kerr B., Riley M. A., Feldman M. W. & Bohannan B. J. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174. [DOI:10.1038/nature00823]
13. Kirkup B. C. & Riley M. A. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412–414. [DOI:10.1038/nature02429]
14. Kleanthous C. 2010. Swimming against the tide: progress and challenge sinour understanding of colicin translocation. Nature Reviews Microbiology 8:843–848. [DOI:10.1038/nrmicro2454]
15. Michel-Briand Y. & Baysse C. 2002. The pyocins of Pseudomonas aeruginosa. Biochimie 84: 499–510. [DOI:10.1016/S0300-9084(02)01422-0]
16. Miller M. B. & Bassler B. L. 2001. Quorum sensing in bacteria. Annual Review of Microbiology 55:165–199. [DOI:10.1146/annurev.micro.55.1.165]
17. Nakayama K., Takashima K., Ishihara H., Shinomiya T., Kageyama M., Kanaya S., Ohnishi M., Murata T., Mori H. & Hayashi T. 2000. The R-type pyocin of Pseudomonas aeruginosais related to P2 phage, and the F-type is related to lambda phage. Molecular Microbiology 38:213–231. [DOI:10.1046/j.1365-2958.2000.02135.x]
18. Nguyen H. A., Tomita T., Hirota M., Kaneko J., Hayashi T. & Kamio Y. 2001. DNA inversion in the tail fiber gene alters the host range specificity of carotovoricin Er, a phage-tail-like bacteriocin of phytopathogenic Erwinia carotovora subsp. carotovora Er. Journal of Bacteriology 183:6274-81. [DOI:10.1128/JB.183.21.6274-6281.2001]
19. Ochiai H., Inoue Y., Takeya M., Sasaki A. & Kaku H. 2005. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Japan Agricultural Research Quarterly 39:275–287. [DOI:10.6090/jarq.39.275]
20. Rebuffat S. 2012. Microcins inaction: amazing defences trategies of Enterobacteria. Biochemical Society Transactions 40:1456–1462. [DOI:10.1042/BST20120183]
21. Riley M. A., Cadavid L., Collett M. S., Neely M. N., Adams M. D., Phillips C. M., Neel J. V. & Friedman D. 2000. The newly characterized colicin Y provides evidence of positive selection in poreformercolicin diversification. Microbiology 46:1671–1677. [DOI:10.1099/00221287-146-7-1671]
22. Riley M. A. & Chavan M. A. 2007. Bacteriocins: Ecology and Evolution.Springer-Verlag Berlin Heidelberg 2007.155p.
23. Riley M.A., Pinou T., Wertz J.E., Tan Y. & Vallett C.M. 2001. Molecular characterization of the klebicin B plasmid of Klebsiella pneumonia. Plasmid 45:209–221. [DOI:10.1006/plas.2001.1519]
24. Riley M. A. & Wertz J. E. 2002a. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364. [DOI:10.1016/S0300-9084(02)01421-9]
25. Riley M. A. & Wertz J. E. 2002b. Bacteriocins: evolution, ecology, and application. Annual Review of Microbiology 56:117–137. [DOI:10.1146/annurev.micro.56.012302.161024]
26. Roh E., Park T. H., Kim M. I., Lee S., Ryu S., Oh C. S., Rhee S., Kim D. H., Park B. S. & Heu S. 2010. Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Applied and Environmental Microbiology 76:7541-7549. [DOI:10.1128/AEM.03103-09]
27. Simpson A. J. G., Reinach F. C. & Arruda P. 2000. The genome sequence of the plant pathogen Xylellafastidiosa. Nature 406:151–157. [DOI:10.1038/35018003]
28. Smarda J. & Obdrzalek V. 2001. Incidence of colicinogenic strains among human Escherichia coli. Journal of Basic Microbiology 41:367–374. https://doi.org/10.1002/1521-4028(200112)41:6<367::AID-JOBM367>3.0.CO;2-X [DOI:10.1002/1521-4028(200112)41:63.0.CO;2-X]
29. Van Sluys M. A., de Oliveira M. C. & Monteiro-Vitorello C. B. 2003. Comparative analyses of the complete genomesequences of Pierce's disease and citrus variegated chlorosis strains of Xylellafastidiosa. Journal of Bacteriology 185:1018–1026. [DOI:10.1128/JB.185.3.1018-1026.2003]
30. Wertz J. E. & Riley M. A. 2004. Chimeric nature of two plasmids of Hafniaalveiencoding the bacteriocinsalveicins A and B. Journal of Bacteriology 186:1598–1605. [DOI:10.1128/JB.186.6.1598-1605.2004]
31. Yamada K., Hirota M., Niimi Y., Nguyen H. A., Takahara Y., Kamio Y. & Kaneko J. 2006. Nucleotide sequences and organization of the genes for carotovoricin (Ctv) from Erwinia carotovora indicate that Ctv evolved from the same ancestor as Salmonella typhiprophage. Bioscience, Biotechnology, and Biochemistry 70:2236–2247. [DOI:10.1271/bbb.60177]
32. Yang S. C., HungLin C., Sung C. T. & FangJia Y. 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology 5:241.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | University of Yasouj Journals System Plant Pathology Science

Designed & Developed by : Yektaweb