1. [1] Linden D. Batteries and fuel cells. Standard Handbook of Electronic Engineering. McGraw-Hill, 2005.
2. [2] Hansson CM. The impact of corrosion on society. Metallurgical and Materials Transactions A. 2011; 42:2952-2962. [
DOI:10.1007/s11661-011-0703-2]
3. [3] Revie RW. Uhlig's corrosion handbook. John Wiley & Sons. Inc., New York, USA. 2000.
4. [4] Postlethwaite J. and Nesic S. Erosion-Corrosion: Recognition and Control. Uhlig's Corrosion Handbook. 2011: 907-913. [
DOI:10.1002/9780470872864.ch65]
5. [5] Marcus P and Oudar J. Corrosion mechanisms in theory and practice. New York: Marcel Dekker. 2002. [
DOI:10.1201/9780203909188]
6. [6] Peabody AW and Bianchetti RL. Peabody's control of pipeline corrosion. NACE International. The Corrosion Society. 2001.
7. [7] Uhlig HH and Revie RW. Corrosion and corrosion control. 1985.
8. [8] Sun X, Sun K, Chen C, Sun H, Cui B. Controlled preparation and surface structure characterization of carbon-coated lithium iron phosphate and electrochemical studies as cathode materials for lithium ion battery. International Journal of Materials and Chemistry. 2012; 2(5):218-24. [
DOI:10.5923/j.ijmc.20120205.06]
9. [9] Braithwaite JW, Gonzales A, Lucero SJ. Degradation of the materials of construction in Li-ion batteries. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); 1997. [
DOI:10.2172/461265]
10. [10] Ghali E. Aluminum and aluminum alloys. Uhlig's Corrosion Handbook. 2011; 28:715-45. [
DOI:10.1002/9780470872864.ch54]
11. [11] Buchheit RG, Zavadil KR, Scully JR, Knight TO. The electrochemical behavior of the Al3Ta intermetallic compound and pitting in two‐phase Al‐Ta alloys. Journal of the Electrochemical Society. 1995;142(1):51. [
DOI:10.1149/1.2043932]
12. [12] Buchheit RG, Cunningham M, Jensen H, Kendig MW, Martinez MA. A correlation between salt spray and electrochemical impedance spectroscopy test results for conversion-coated aluminum alloys. Corrosion. 1998; 54(1):61-72. [
DOI:10.5006/1.3284829]
13. [13] Zhao M, Dewald HD, Lemke FR, Staniewicz RJ. Electrochemical Stability of Graphite‐Coated Copper in Lithium‐Ion Battery Electrolytes. Journal of the Electrochemical Society. 2000; 147(11):3983. [
DOI:10.1149/1.1394007]
14. [14] Abouimrane A, Ding J, Davidson IJ. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources. 2009; 189(1):693-6. [
DOI:10.1016/j.jpowsour.2008.08.077]
15. [15] Krause LJ, Lamanna W, Summerfield J, Engle M, Korba G, Loch R, Atanasoski R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of power sources. 1997; 68(2):320-5. [
DOI:10.1016/S0378-7753(97)02517-2]
16. [16] Prabakar SR, Hwang YH, Bae EG, Lee DK, Pyo M. Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries. Carbon. 2013; 52:128-36. [
DOI:10.1016/j.carbon.2012.09.013]
17. [17] Braithwaite JW, Gonzales A, Nagasubramanian G, Lucero SJ, Peebles DE, Ohlhausen JA, Cieslak WR. Corrosion of lithium‐ion battery current collectors. Journal of the electrochemical society. 1999; 146(2):448. [
DOI:10.1149/1.1391627]
18. [18] Arora P, White RE, Doyle M. Capacity fade mechanisms and side reactions in lithium‐ion batteries. Journal of the Electrochemical Society. 1998; 145(10):3647. [
DOI:10.1149/1.1838857]
19. [19] Leidheiser H. The corrosion of copper, tin, and their alloys. 1971.
20. [20] Sieradzki K, Sabatini RL, Newman RC. Stress-corrosion cracking of copper single crystals. Metallurgical Transactions A. 1984; 15:1941-6. [
DOI:10.1007/BF02664907]
21. [21] Yang L, Takahashi M, Wang B. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling. Electrochimica Acta. 2006; 51(16):3228-34. [
DOI:10.1016/j.electacta.2005.09.014]
22. [22] Pugh EN, Montague WG, Westwood AR. Stress-corrosion cracking of copper. Corrosion Science. 1966; 6(7):345-IN17. [
DOI:10.1016/S0010-938X(66)80041-0]