1. 1] Al-Sumaily GF, Thompson MC. Forced convection from a circular cylinder in pulsating flow with and without the presence of porous media. International Journal of Heat and Mass Transfer. 2013; 61:226-44. [
DOI:10.1016/j.ijheatmasstransfer.2013.01.067]
2. [2] Al-Sumaily GF, Sheridan J, Thompson MC. Validation of thermal equilibrium assumption in forced convection steady and pulsatile flows over a cylinder embedded in a porous channel. International Communications in Heat and Mass Transfer. 2013; 43:30-8. [
DOI:10.1016/j.icheatmasstransfer.2013.01.009]
3. [3] Selimefendigil F, Föller S, Polifke W. Nonlinear identification of unsteady heat transfer of a cylinder in pulsating cross flow. Computers & fluids. 2012; 53:1-4. [
DOI:10.1016/j.compfluid.2011.08.012]
4. [4] Selimefendigil F, Öztop HF. Identification of forced convection in pulsating flow at a backward facing step with a stationary cylinder subjected to nanofluid. International Communications in Heat and Mass Transfer. 2013; 45:111-21. [
DOI:10.1016/j.icheatmasstransfer.2013.04.016]
5. [5] Selimefendigil F, Öztop HF. Numerical study and identification of cooling of heated blocks in pulsating channel flow with a rotating cylinder. International Journal of Thermal Sciences. 2014; 79:132-45. [
DOI:10.1016/j.ijthermalsci.2014.01.010]
6. [6] Huang Z, Zhang W, Xi G. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature. International Journal of Heat and Mass Transfer. 2015; 82:16-25. [
DOI:10.1016/j.ijheatmasstransfer.2014.11.044]
7. [7] Sung HJ, Hwang KS, Hyun JM. Experimental study on mass transfer from a circular cylinder in pulsating flow. International Journal of Heat and Mass Transfer. 1994; 37(15):2203-10. [
DOI:10.1016/0017-9310(94)90363-8]
8. [8] Perwaiz J, Base TE. Heat transfer from a cylinder and finned tube in a pulsating crossflow. Experimental thermal and Fluid Science. 1992; 5(4):506-12. [
DOI:10.1016/0894-1777(92)90037-6]
9. [9] Ji TH, Kim SY, Hyun JM. Experiments on heat transfer enhancement from a heated square cylinder in a pulsating channel flow. International Journal of Heat and Mass Transfer. 2008; 51(5-6):1130-8. [
DOI:10.1016/j.ijheatmasstransfer.2007.04.015]
10. [10] Iwai H, Mambo T, Yamamoto N, Suzuki K. Laminar convective heat transfer from a circular cylinder exposed to a low frequency zero-mean velocity oscillating flow. International Journal of Heat and Mass Transfer. 2004; 47(21):4659-72. [
DOI:10.1016/j.ijheatmasstransfer.2003.08.031]
11. [11] Steggel N. A numerical investigation of the flow around rectangular cylinders. Doctoral Dissertation, University of Surrey; 1998.
12. [12] Bouris D, Konstantinidis E. Numerical study of fluid forces and vortex patterns in the wake of a circular cylinder subject to harmonic and non‐harmonic inflow velocity perturbations. In IUTAM Symposium on Bluff Body Flows 2011.
13. [13] Lin YC, Brant DO, Bartlett RH, Hirschl RB, Bull JL. Pulsatile flow past a cylinder: An experimental model of flow in an artificial lung. Asaio Journal. 2006; 52(6):614-23. [
DOI:10.1097/01.mat.0000235281.49204.24]
14. [14] Lin YC, Khanafer K, Bartlett RH, Hirschl RB, Bull JL. Pulsatile flow past multiple cylinders: A model study of blood flow in an artificial lung. In 4th Kuala Lumpur International Conference on Biomedical Engineering 2008: BIOMED 2008, Malaysia 2008 (pp. 36-39). [
DOI:10.1007/978-3-540-69139-6_14]
15. [15] Zdravkovich MM. Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements. Journal of Wind Engineering and Industrial Aerodynamics. 1988; 28:183-99. [
DOI:10.1016/0167-6105(88)90115-8]
16. [16] Konstantinidis E, Castiglia D, Balabani S, Yianneskis M. On the flow and vortex shedding characteristics of an in-line tube bundle in steady and pulsating crossflow. Chemical Engineering Research and Design. 2000; 78(8):1129-38. [
DOI:10.1205/026387600528283]
17. [17] Konstantinidis E, Balabani S, Yianneskis M. A study of vortex shedding in a staggered tube array for steady and pulsating cross-flow. Journal of Fluids Engineering. 2002; 124(3):737-46. [
DOI:10.1115/1.1487359]
18. [18] Konstantinidis E, Castiglia D, Balabani S. An experimental study of steady and pulsating cross-flow over a semi-staggered tube bundle. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2005; 219(3):283-98. [
DOI:10.1243/095440605X16848]
19. [19] Liang C, Papadakis G, Luo X. Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube array: a numerical study. Computers & Fluids. 2009; 38(4):950-64. [
DOI:10.1016/j.compfluid.2008.10.005]
20. [20] Konstantinidis E, Balabani S, Yianneskis M. Relationship between vortex shedding lock-on and heat transfer: Implications for tube bundles in cross-flow. Chemical Engineering Research and Design. 2003; 81(6):695-9. [
DOI:10.1205/026387603322150543]
21. [21] Khaibullina A, Khairullin A, Sinyavin A, Ilin V. Heat transfer at in-line tube bank under low-frequency asymmetrical impulses impact on fluid flow. In EPJ Web of Conferences 2014 (Vol. 76, p. 01004). [
DOI:10.1051/epjconf/20147601004]
22. [22] Mulcahey TI, Pathak MG, Ghiaasiaan SM. The effect of flow pulsation on drag and heat transfer in an array of heated square cylinders. International Journal of Thermal Sciences. 2013; 64:105-20. [
DOI:10.1016/j.ijthermalsci.2012.08.017]
23. [23] Liang C. Large eddy simulation of the turbulent flow and heat transfer in tube bundles. Doctoral Dissertation, University of London; 2005.
24. [24] Tiwari S, Chakraborty D, Biswas G, Panigrahi PK. Numerical prediction of flow and heat transfer in a channel in the presence of a built-in circular tube with and without an integral wake splitter. International Journal of Heat and Mass Transfer. 2005; 48(2):439-53. [
DOI:10.1016/j.ijheatmasstransfer.2004.09.003]
25. [25] Seri SM, Batcha MF, Raghavan VR. Heat Transfer Studies in Tube Banks with Integral Wake Splitters. International Journal of Integrated Engineering. 2009; 1(1).
26. [26] Chakrabarty SG, Wankhede US. Flow and heat transfer behaviour across circular cylinder and tube banks with and without splitter plate. Nagpur India. 2012.
27. [27] Dehkordi BG, Jafari HH. On the suppression of vortex shedding from circular cylinders using detached short splitter-plates. Journal of Fluids Engineering. 2010; 132(4): 044501. [
DOI:10.1115/1.4001384]
28. [28] Oruç V, Akar MA, Akilli H, Sahin B. Suppression of asymmetric flow behavior downstream of two side-by-side circular cylinders with a splitter plate in shallow water. Measurement. 2013; 46(1):442-55. [
DOI:10.1016/j.measurement.2012.07.020]
29. [29] Qiu Y, Sun Y, Wu Y, Tamura Y. Effects of splitter plates and Reynolds number on the aerodynamic loads acting on a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics. 2014; 127:40-50. [
DOI:10.1016/j.jweia.2014.02.003]
30. [30] Assi GR, Bearman PW. Transverse galloping of circular cylinders fitted with solid and slotted splitter plates. Journal of Fluids and Structures. 2015; 54:263-80. [
DOI:10.1016/j.jfluidstructs.2014.11.005]
31. [31] Jayavel S, Tiwari S. Effect of vortex generators and integral splitter plate on heat transfer and pressure drop for laminar flow past channel-confined tube banks. Heat Transfer Engineering. 2010; 31(5):383-94. [
DOI:10.1080/01457630903373223]
32. [32] Jiji LM, Jiji LM. Heat convection. Berlin: Springer; 2006.
33. [33] Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. New York: Wiley; 1996.
34. [34] Liang C, Papadakis G. Large eddy simulation of pulsating flow over a circular cylinder at subcritical Reynolds number. Computers & Fluids. 2007; 36(2):299-312. [
DOI:10.1016/j.compfluid.2005.10.004]