Volume 4, Issue 1 (9-2023)                   jste 2023, 4(1): 44-55 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghanbari F, Omidvar A. (2023). Numerical study of heat transfer rate of an isothermal circular cylinder in the presence and absence of a splitter plate under pulsating flow. jste. 4(1), : 5
URL: http://yujs.yu.ac.ir/jste/article-1-121-en.html
Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran , omidvar@sutech.ac.ir
Abstract:   (220 Views)
 In this study, the effects of non-dimensional amplitude and frequency of pulsating flow are investigated on the heat transfer rate of a circular cylinder in the presence and absence of a splitter plate, for this purpose, at first the heat transfer rate of unpulsating flow is investigated and then compared with the results obtained from the pulsating flow. The pulsating flow over a circular cylinder is studied in the range of pulsating Strouhal number (0.1-2) and amplitude of pulsating flow A=0.75 in the Reynolds number of Re=100. Pulsating flow is one of the factors that can be effective on the heat transfer rate. But in general, the change in the heat transfer rate under pulsating flow depends on non-dimensional amplitude and frequency of pulsating flow. The best case for increasing the heat transfer rate is when the splitter plate is attached to the body. In all range of the pulsating Strouhal number, increase in the Nusselt number in the presence of a splitter plate is reported relative to the absence of splitter plate in pulsating flow.
Article number: 5
Full-Text [PDF 1464 kb]   (125 Downloads)    
Type of Study: Research | Subject: Special

References
1. 1] Al-Sumaily GF, Thompson MC. Forced convection from a circular cylinder in pulsating flow with and without the presence of porous media. International Journal of Heat and Mass Transfer. 2013; 61:226-44. [DOI:10.1016/j.ijheatmasstransfer.2013.01.067]
2. [2] Al-Sumaily GF, Sheridan J, Thompson MC. Validation of thermal equilibrium assumption in forced convection steady and pulsatile flows over a cylinder embedded in a porous channel. International Communications in Heat and Mass Transfer. 2013; 43:30-8. [DOI:10.1016/j.icheatmasstransfer.2013.01.009]
3. [3] Selimefendigil F, Föller S, Polifke W. Nonlinear identification of unsteady heat transfer of a cylinder in pulsating cross flow. Computers & fluids. 2012; 53:1-4. [DOI:10.1016/j.compfluid.2011.08.012]
4. [4] Selimefendigil F, Öztop HF. Identification of forced convection in pulsating flow at a backward facing step with a stationary cylinder subjected to nanofluid. International Communications in Heat and Mass Transfer. 2013; 45:111-21. [DOI:10.1016/j.icheatmasstransfer.2013.04.016]
5. [5] Selimefendigil F, Öztop HF. Numerical study and identification of cooling of heated blocks in pulsating channel flow with a rotating cylinder. International Journal of Thermal Sciences. 2014; 79:132-45. [DOI:10.1016/j.ijthermalsci.2014.01.010]
6. [6] Huang Z, Zhang W, Xi G. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature. International Journal of Heat and Mass Transfer. 2015; 82:16-25. [DOI:10.1016/j.ijheatmasstransfer.2014.11.044]
7. [7] Sung HJ, Hwang KS, Hyun JM. Experimental study on mass transfer from a circular cylinder in pulsating flow. International Journal of Heat and Mass Transfer. 1994; 37(15):2203-10. [DOI:10.1016/0017-9310(94)90363-8]
8. [8] Perwaiz J, Base TE. Heat transfer from a cylinder and finned tube in a pulsating crossflow. Experimental thermal and Fluid Science. 1992; 5(4):506-12. [DOI:10.1016/0894-1777(92)90037-6]
9. [9] Ji TH, Kim SY, Hyun JM. Experiments on heat transfer enhancement from a heated square cylinder in a pulsating channel flow. International Journal of Heat and Mass Transfer. 2008; 51(5-6):1130-8. [DOI:10.1016/j.ijheatmasstransfer.2007.04.015]
10. [10] Iwai H, Mambo T, Yamamoto N, Suzuki K. Laminar convective heat transfer from a circular cylinder exposed to a low frequency zero-mean velocity oscillating flow. International Journal of Heat and Mass Transfer. 2004; 47(21):4659-72. [DOI:10.1016/j.ijheatmasstransfer.2003.08.031]
11. [11] Steggel N. A numerical investigation of the flow around rectangular cylinders. Doctoral Dissertation, University of Surrey; 1998.
12. [12] Bouris D, Konstantinidis E. Numerical study of fluid forces and vortex patterns in the wake of a circular cylinder subject to harmonic and non‐harmonic inflow velocity perturbations. In IUTAM Symposium on Bluff Body Flows 2011.
13. [13] Lin YC, Brant DO, Bartlett RH, Hirschl RB, Bull JL. Pulsatile flow past a cylinder: An experimental model of flow in an artificial lung. Asaio Journal. 2006; 52(6):614-23. [DOI:10.1097/01.mat.0000235281.49204.24]
14. [14] Lin YC, Khanafer K, Bartlett RH, Hirschl RB, Bull JL. Pulsatile flow past multiple cylinders: A model study of blood flow in an artificial lung. In 4th Kuala Lumpur International Conference on Biomedical Engineering 2008: BIOMED 2008, Malaysia 2008 (pp. 36-39). [DOI:10.1007/978-3-540-69139-6_14]
15. [15] Zdravkovich MM. Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements. Journal of Wind Engineering and Industrial Aerodynamics. 1988; 28:183-99. [DOI:10.1016/0167-6105(88)90115-8]
16. [16] Konstantinidis E, Castiglia D, Balabani S, Yianneskis M. On the flow and vortex shedding characteristics of an in-line tube bundle in steady and pulsating crossflow. Chemical Engineering Research and Design. 2000; 78(8):1129-38. [DOI:10.1205/026387600528283]
17. [17] Konstantinidis E, Balabani S, Yianneskis M. A study of vortex shedding in a staggered tube array for steady and pulsating cross-flow. Journal of Fluids Engineering. 2002; 124(3):737-46. [DOI:10.1115/1.1487359]
18. [18] Konstantinidis E, Castiglia D, Balabani S. An experimental study of steady and pulsating cross-flow over a semi-staggered tube bundle. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2005; 219(3):283-98. [DOI:10.1243/095440605X16848]
19. [19] Liang C, Papadakis G, Luo X. Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube array: a numerical study. Computers & Fluids. 2009; 38(4):950-64. [DOI:10.1016/j.compfluid.2008.10.005]
20. [20] Konstantinidis E, Balabani S, Yianneskis M. Relationship between vortex shedding lock-on and heat transfer: Implications for tube bundles in cross-flow. Chemical Engineering Research and Design. 2003; 81(6):695-9. [DOI:10.1205/026387603322150543]
21. [21] Khaibullina A, Khairullin A, Sinyavin A, Ilin V. Heat transfer at in-line tube bank under low-frequency asymmetrical impulses impact on fluid flow. In EPJ Web of Conferences 2014 (Vol. 76, p. 01004). [DOI:10.1051/epjconf/20147601004]
22. [22] Mulcahey TI, Pathak MG, Ghiaasiaan SM. The effect of flow pulsation on drag and heat transfer in an array of heated square cylinders. International Journal of Thermal Sciences. 2013; 64:105-20. [DOI:10.1016/j.ijthermalsci.2012.08.017]
23. [23] Liang C. Large eddy simulation of the turbulent flow and heat transfer in tube bundles. Doctoral Dissertation, University of London; 2005.
24. [24] Tiwari S, Chakraborty D, Biswas G, Panigrahi PK. Numerical prediction of flow and heat transfer in a channel in the presence of a built-in circular tube with and without an integral wake splitter. International Journal of Heat and Mass Transfer. 2005; 48(2):439-53. [DOI:10.1016/j.ijheatmasstransfer.2004.09.003]
25. [25] Seri SM, Batcha MF, Raghavan VR. Heat Transfer Studies in Tube Banks with Integral Wake Splitters. International Journal of Integrated Engineering. 2009; 1(1).
26. [26] Chakrabarty SG, Wankhede US. Flow and heat transfer behaviour across circular cylinder and tube banks with and without splitter plate. Nagpur India. 2012.
27. [27] Dehkordi BG, Jafari HH. On the suppression of vortex shedding from circular cylinders using detached short splitter-plates. Journal of Fluids Engineering. 2010; 132(4): 044501. [DOI:10.1115/1.4001384]
28. [28] Oruç V, Akar MA, Akilli H, Sahin B. Suppression of asymmetric flow behavior downstream of two side-by-side circular cylinders with a splitter plate in shallow water. Measurement. 2013; 46(1):442-55. [DOI:10.1016/j.measurement.2012.07.020]
29. [29] Qiu Y, Sun Y, Wu Y, Tamura Y. Effects of splitter plates and Reynolds number on the aerodynamic loads acting on a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics. 2014; 127:40-50. [DOI:10.1016/j.jweia.2014.02.003]
30. [30] Assi GR, Bearman PW. Transverse galloping of circular cylinders fitted with solid and slotted splitter plates. Journal of Fluids and Structures. 2015; 54:263-80. [DOI:10.1016/j.jfluidstructs.2014.11.005]
31. [31] Jayavel S, Tiwari S. Effect of vortex generators and integral splitter plate on heat transfer and pressure drop for laminar flow past channel-confined tube banks. Heat Transfer Engineering. 2010; 31(5):383-94. [DOI:10.1080/01457630903373223]
32. [32] Jiji LM, Jiji LM. Heat convection. Berlin: Springer; 2006.
33. [33] Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. New York: Wiley; 1996.
34. [34] Liang C, Papadakis G. Large eddy simulation of pulsating flow over a circular cylinder at subcritical Reynolds number. Computers & Fluids. 2007; 36(2):299-312. [DOI:10.1016/j.compfluid.2005.10.004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb