(Spring and Summer)                   Back to the articles list | Back to browse issues page

XML Persian Abstract Print


Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz, Iran , ali.shayanfar13@gmail.com
Abstract:   (34 Views)
Objective: This study aimed to simulate the effects of thermal shocks from crop residue burning and soil temperatures on the germination and dormancy of flixweed (Descurainia sophia) seeds under laboratory conditions.
Method: A factorial experiment was conducted based on a completely randomized design with four replications. Heat shock treatments were applied to flixweed seeds at 80°C and 120°C for durations of 2.5 and 7.5 minutes. Subsequently, the treated seeds were incubated for 14 days under constant temperatures of 7, 15, 20, 25, 30, and 35°C, as well as under an alternating temperature regime of 20/30°C (16h/8h). Various seed germination and dormancy indices were then recorded and analyzed.
Results: The optimum temperature for flixweed seed germination was 7°C. Increasing the germination temperature to 35°C significantly reduced both the germination percentage and rate, while significantly increasing the percentages of dead and dormant seeds. Compared to constant temperatures above 7°C, alternating temperature treatments combined with light exposure enhanced the germination rate and percentage and decreased seed dormancy. Both elevated substrate temperatures and heat shock treatments increased the percentage of dead seeds, particularly at 30 and 35°C under the 120°C heat shock treatment. The highest percentage of normal seedlings was observed at 7°C and under the 20/30°C alternating temperature regime. Applying an 80°C heat shock for 2.5 minutes improved both the germination percentage and rate, and reduced secondary dormancy compared to the control at the same incubation temperature. In contrast, heat shocks at higher temperatures (120°C) led to increased seed mortality and reduced both germination and dormancy.
Conclusions: Heat shock treatments did not induce secondary dormancy (thermo-dormancy) in flixweed seeds; instead, they primarily influenced the germination percentage, germination rate, and seed mortality. The induction of secondary dormancy in flixweed seeds was observed only as a result of elevated substrate temperatures above 7°C. Thermo-dormancy caused by exposure to higher temperatures can be mitigated through alternating temperature treatments combined with light, thereby enhancing both the germination percentage and rate.

Highlights
  • The response of the flixweed soil seed bank to crop residue burning was simulated under laboratory conditions.
  • Secondary dormancy induction in flixweed seeds was assessed in response to both heat shock and incubation temperature treatments.
  • Thermo-dormancy in flixweed seeds was induced exclusively by elevated substrate temperature, not by heat shock treatments.
Full-Text [PDF 521 kb]   (18 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2025/07/28 | Revised: 2025/07/31 | Accepted: 2025/08/1

References
1. Aguayo-Villalba, A. A., Alvarez-Gomez, C. M., Aisa-Ahmed, M., Barroso-Rodriguez, L. M., Camacho-Lopez, S., Cocero-Ramirez, A., & Sanchez-Romero, C. (2021). Effect of fire on viability and germination behaviour of Cistus ladanifer and Cistus salvifolius seeds. Folia Geobotanica, 56, 215-225. [DOI:10.1007/s12224-022-09405-2]
2. Alcaniz, M., Outeiro, L., Francos, M., & Ubeda, X. (2018). Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613-614, 944-957. [DOI:10.1016/j.scitotenv.2017.09.144] [PMID]
3. Alijani, K., Kazemeini, S. A., Bahrani, M. J., & Ghadiri, H. (2023). Weed seed bank as affected by tillage, residue, and fertilization management under sweet corn-wheat cropping sequence in Iran. Weed Biology and Management, 23(1), 3-13. [DOI:10.1111/wbm.12263]
4. Al-Whaibi, M. H. (2011). Plant heat-shock proteins: A mini review. Journal of King Saud University - Science, 23, 139-150. [DOI:10.1016/j.jksus.2010.06.022]
5. Association of Official Seed Analysts. (1983). Seed vigor testing handbook (Contribution No. 32). AOSA.
6. Bahmani, M., Tajeddini, P., Ezatpour, B., Rafieian-Kopaei, M., Naghdi, N., & Asadi-Samani, M. (2016). Ethnobotanical study of medicinal plants against parasites detected in Shiraz, southern part of Iran. Der Pharmacia Lettre, 8, 153-160.
7. Baskin, C. C., & Baskin, J. M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination (2nd ed.). Elsevier/Academic Press.
8. Baskin, C. C., Milberg, P., Andersson, L., & Baskin, J. M. (2004). Germination ecology of seeds of the annual weeds Capsella bursa-pastoris and Descurainia sophia originating from high northern latitudes. Weed Research, 44(1), 60-68. [DOI:10.1046/j.1365-3180.2003.00373.x]
9. Bekker, N. P., Ulchenko, N. T., & Glushenkova, A. I. (2005). Lipids from Descurainia sophia seeds. Chemistry of Natural Compounds, 41, 346-347. [DOI:10.1007/s10600-005-0146-3]
10. Cuena Lombrana, A., Dessi, L., Podda, L., Fois, M., Luna, B., Porceddu, M., & Bacchetta, G. (2024). The effect of heat shock on seed dormancy release and germination in two rare and endangered Astragalus L. species (Fabaceae). Plants, 13(4), 484. [DOI:10.3390/plants13040484] [PMID] []
11. Davis, J. B., Brown, J., Brennan, J. S., & Thill, D. C. (1999). Predicting decreases in canola (Brassica napus and B. rapa) oil and meal quality caused by contamination by Brassicaceae weed seeds. Weed Technology, 13(2), 239-243. [DOI:10.1017/S0890037X00041671]
12. Ebel, R., & Menalled, F. (2025). Agroecology of edible weeds and noncrop plants: Ecology and socioeconomic potential of the associated plant biodiversity. Academic Press. [DOI:10.1016/B978-0-443-16076-9.00006-8]
13. Fallahi, H. R., Aghhavani-Shajari, M., Mohammadi, M., Kadkhodaei-Barkook, R., & Zareei, E. (2017). Predicting of flixweed (Descurainia sophia (L.) Webb ex Prantl) germination response to temperature using regression models. Journal of Applied Research on Medicinal and Aromatic Plants, 6, 131-134. [In Persian] [DOI:10.1016/j.jarmap.2017.04.005]
14. Fernandez-Garcia, V., Fule, P. Z., Marcos, E., & Calvo, L. (2019). The role of fire frequency and severity on the regeneration of Mediterranean serotinous pines under different environmental conditions. Forest Ecology and Management, 444, 59-68. [DOI:10.1016/j.foreco.2019.04.040]
15. Geshnizjani, N., Ghaderi-Far, F., Willems, L. A., Hilhorst, H. W., & Ligterink, W. (2018). Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy. BMC Plant Biology, 18, 229. [DOI:10.1186/s12870-018-1449-4] [PMID] []
16. Ghorbani, A. (2005). Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran (part 1): General results. Journal of Ethnopharmacology, 102, 58-68. [DOI:10.1016/j.jep.2005.05.035] [PMID]
17. Hills, P. N., & van Staden, J. (2003). Thermoinhibition of seed germination. South African Journal of Botany, 69(4), 455-461. [DOI:10.1016/S0254-6299(15)30281-7]
18. Huarte, H. R., & Benech-Arnold, R. L. (2010). Hormonal nature of seed responses to fluctuating temperatures in Cynara cardunculus (L.). Seed Science Research, 20(1), 39-45. [DOI:10.1017/S0960258509990249]
19. International Seed Testing Association. (2022). International Rules for Seed Testing. ISTA.
20. Khan, M., Xiao, Y., Yu, B., Wang, N., Rasul, A., Yi, F., Yang, L., Yang, H., & Ma, T. (2012). Artabotryside A, a constituent from Descurainia sophia (L.) induces cell death in U87 glioma cells through apoptosis and cell cycle arrest at G2/M phase. Journal of Medicinal Plant Research, 6(20), 3754-3765. [DOI:10.5897/JMPR11.1749]
21. Khosravi-Pour, B., Siahpoosh, A., & Mohammadi-Karbalaei, Z. (2015, May). The importance of cultivating medicinal plants and producing their products in agriculture. Paper presented at the 1st National Conference on Herbs and Herbal Medicine, Tehran, Iran. [In Persian]
22. Kumar, B., Gupta, E., Mali, H. P., & Singh, M. (2013). Constant and alternating temperature effects on seed germination potential in Artemisia annua L. Journal of Crop Improvement, 27(6), 636-642. [DOI:10.1080/15427528.2013.832458]
23. Landau, C. A., Schutte, B. J., Mesbah, A. O., & Angadi, S. V. (2017). Flixweed (Descurainia sophia) shade tolerance and possibilities for flixweed management using rapeseed seeding rate. Weed Technology, 31(3), 477-486. [DOI:10.1017/wet.2017.33]
24. Lehnhoff, E. A., Schutte, B. J., Rashid, A., & Sanogo, S. (2025). Descurainia sophia (flixweed): A weed with many uses and ecological roles. In R. Ebel & F. Menalled (Eds.), Agroecology of edible weeds and noncrop plants (pp. 209-224). Academic Press. [DOI:10.1016/B978-0-443-16076-9.00013-5]
25. Li, W., Liu, X., Khan, M. A., Kamiya, Y., & Yamaguchi, S. (2005). Hormonal and environmental regulation of seed germination in flixweed (Descurainia sophia). Plant Growth Regulation, 45(3), 199-207. [DOI:10.1007/s10725-005-4116-3]
26. Liu, Z., Li, M., Zhu, M., Lopez, R., Salomón, R. L., & Zhang, P. (2024). Thermo-dormancy and germination response to temperature of Pyrus ussuriensis seeds. Agronomy, 14(3), 475. [DOI:10.3390/agronomy14030475]
27. Luna, B., Moreno, J. M., Fernandez-González, F., & Cruz, A. (2007). Heat-shock and seed germination of a group of Mediterranean plant species growing in a burned area: An approach based on plant functional types. Environmental and Experimental Botany, 60(3), 324-333. [DOI:10.1016/j.envexpbot.2006.12.014]
28. Ma, W., Guan, X., Li, J., Pan, R., Wang, L., Liu, F., Ma, H., Zhu, S., Hu, J., Ruan, Y. L., Chen, X., & Zhang, T. (2019). Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4716-4721. [DOI:10.1073/pnas.1815790116] [PMID] []
29. Malek, M., Ghaderi-Far, F., Torabi, B., & Sadeghipour, H. R. (2022). Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L.). Journal of Plant Physiology, 269, 153614. [DOI:10.1016/j.jplph.2021.153614] [PMID]
30. McCarty, J. L., Krylov, A., Prishchepov, A. V., Banach, D. M., Tyukavina, A., Potapov, P., & Turubanova, S. (2017). Agricultural fires in European Russia, Belarus, and Lithuania and their impact on air quality, 2002-2012. In G. Gutman & V. Radeloff (Eds.), Land-cover and land-use changes in Eastern Europe after the collapse of the Soviet :union: in 1991. Springer. [DOI:10.1007/978-3-319-42638-9_9]
31. Moreira, B., & Pausas, J. G. (2012). Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE, 7(12), e51523. [DOI:10.1371/journal.pone.0051523] [PMID] []
32. Neeman, G., Neeman, R., Keith, D. A., & Whelan, R. J. (2009). Does postfire plant regeneration mode affect the germination response to fire-related cues? Oecologia, 159(3), 483-492. [DOI:10.1007/s00442-008-1237-1] [PMID]
33. Nimrouzi, M., & Zarshenas, M. M. (2016). Phytochemical and pharmacological aspects of Descurainia sophia Webb ex Prantl: Modern and traditional applications. Avicenna Journal of Phytomedicine, 6(3), 266-272.
34. Ooi, M. K. J., Denham, A. J., Santana, V. M., & Auld, T. D. (2014). Temperature thresholds of physically dormant seeds and plant functional response to fire: Variation among species and relative impact of climate change. Ecology and Evolution, 4(5), 656-671. [DOI:10.1002/ece3.973] [PMID] []
35. Oskouei, B., Dehshiri, A., Afshar, H., Gheisari, E., & Shayanfar, A. (2023). Optimal condition determination for Flixweed standard seed germination test (Descurainia sophia). Iranian Journal of Seed Science and Technology, 12(2), 65-78. [In Persian]
36. Plue, J., Van Calster, H., Auestad, I., Basto, S., Renee, M., & Bekker, M. (2020). Buffering effects of soil seed banks on plant community composition in response to land use and climate. Global Ecology and Biogeography, 30(1), 1-12. [DOI:10.1111/geb.13201]
37. Postma, F. M., & Agren, J. (2022). Effects of primary seed dormancy on lifetime fitness of Arabidopsis thaliana in the field. Annals of Botany, 129(7), 795-808. [DOI:10.1093/aob/mcac010] [PMID] []
38. Ranal, M., & De Santana, D. G. (2006). How and why to measure the germination process? Revista Brasileira de Botanica, 29(1), 1-11. [DOI:10.1590/S0100-84042006000100002]
39. Shayanfar, A., Ghaderi-Far, F., Behmaram, R., Soltani, A., & Sadeghipour, H. R. (2020). Impacts of fire cues on germination of Brassica napus L. seeds with high and low secondary dormancy. Plant Biology, 22(4), 647-654. [In Persian] [DOI:10.1111/plb.13115] [PMID]
40. Tran, N. T., Loc, N., Ali, T., Schmitz, G., & de Meaux, J. (2025). Heat-induced secondary dormancy contributes to local adaptation in Arabidopsis thaliana. bioRxiv. [DOI:10.1101/2025.02.20.638146]
41. Wang, H., Sun, P., Guo, W., Dong, X., Liu, W., & Wang, J. (2021). Florasulam resistance status of flixweed (Descurainia sophia L.) and alternative herbicides for its chemical control in the North China plain. Pesticide Biochemistry and Physiology, 172, 104748. [DOI:10.1016/j.pestbp.2020.104748] [PMID]
42. Yang, J., Luo, Y., Baskin, J. M., Baskin, C. C., Prinzing, A., Liu, L., Xu, C., & Zhang, K. (2025). Seed dormancy cycling: A driver of germination timing in a facultative winter annual. Plant Diversity. [Advance online publication]. [DOI:10.1016/j.pld.2025.05.007]
43. Zacchello, G., Bomers, S., Bohme, C., Postma, F. M., & Agren, J. (2022). Seed dormancy varies widely among Arabidopsis thaliana populations both between and within Fennoscandia and Italy. Ecology and Evolution, 12(3), e8670. [DOI:10.1002/ece3.8670] [PMID] []
44. Zhang, Y., Liu, Y., Sun, L., Baskin, C. C., Baskin, J. M., Cao, M., & Yang, J. (2022). Seed dormancy in space and time: Global distribution, paleoclimatic and present climatic drivers, and evolutionary adaptations. New Phytologist, 234(5), 1770-1781. [DOI:10.1111/nph.18099] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.