Volume 10, Issue 2 ((Spring and Summer) 2021)                   Plant Pathol. Sci. 2021, 10(2): 50-64 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Imani S, Moosavi M R, Zare R, Basirnia T. (2021). Optimum substrate and carrier for Purpureocillium lilacinum and its effectiveness against Meloidogyne javanica on tomato. Plant Pathol. Sci.. 10(2), 50-64. doi:10.52547/pps.10.2.50
URL: http://yujs.yu.ac.ir/pps/article-1-348-en.html
Department of Plant Pathology, Marvdasht Branch of Islamic Azad University, Marvdasht, Iran , rmmoosavi@miau.ac.ir
Abstract:   (3406 Views)
Imani S, Moosavi SMR, Zare R, Basirnia T (2021) Optimum substrate and carrier for Purpureocillium lilacinum and its effectiveness against Meloidogyne javanica on tomato. Plant Pathology Science 10(2):50-64.  Doi: 10.2982/PPS.10.2.50.
Introduction: The soil-borne root-knot nematode (Meloidogyne javanica) causes heavy losses in tomato plants every year. Their management by chemical nematicides is difficult, expensive, and may also kill soil beneficial microorganisms, so other safer methods should be used to replace them. Purpureocillium lilacinum is an important biological control agent against root-knot and cyst nematodes. This study was carried out to determine the appropriate substrate and carrier of this fungus and its effect on these nematodes in tomatoes. Material and Methods: P. lilacinum was propagated in vitro on seeds of millet, corn, alfalfa, and clover substrates and their spore production was assessed 10, 20, and 30 days after inoculation. The survival of the fungal spores was then examined in talc, kaolin, and corn cob powder as carriers for 12 months. The effect of the fungus in the mentioned carriers against Meloidogyne javanica on tomato was investigated in the greenhouse by means of a completely randomized design experiment. Results: The highest number of spores in one gram of substrate was produced on millet seed on day 30. The highest number of survived spores was detected in the corncob powder carrier at all 12 months of the experiment. The fungus on corn cob powder was able to control M. javanica to 95% was similar to the nematicide Flopyram. This formulation also had a superior effect in establishing the fungus in the rhizosphere and on roots, suppressing the growth parameters of nematode and increasing plant growth. Conclusion: The fungus reproduced well on millet seeds and could last longer if formulated on corn cobs powder. Therefore, corn cobs powder can be a suitable base to produce an effective powdered product against M. javanica.
Full-Text [PDF 1176 kb]   (1493 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/11/7 | Accepted: 2022/01/8

1. Abad P, Castagnone-Sereno P, Rosso MN, de Almeida Engler J, Favery B (2009) Invasion, Feeding and Development. Pp. 163-181. In: RN Perry, M Moens, JL Starr (eds.). Root-Knot Nematodes. CABI Publishing, Waligford, UK. [DOI:10.1079/9781845934927.0163]
2. Abbott WS (1925) A method of computing the effectiveness of an insecticide. Journal of Economic of Entomology 18:265-276. [DOI:10.1093/jee/18.2.265a]
3. Agrios GN (2005) Plant Pathology. 5th (ed.). Academic Press, The Netherlands, 922p.
4. Ahmad RZ, Sidi BB, Endrawati D, Ekawasti F, Chaerani C (2019) Paecilomyces lilacinus and P. variotii as a predator of nematode and trematode eggs. Earth and Environmental Science 299:012056. [DOI:10.1088/1755-1315/299/1/012056]
5. Cumagun CJR, Moosavi MR (2015) Significance of Biocontrol Agents of Phytonematodes. Pp. 50-78. In: TH Askary, PRP Martinelli (eds.). Biocontrol Agents of Phytonematodes. CABI Publishing, Wallingford, UK. [DOI:10.1079/9781780643755.0050]
6. De Leij FAAM, Kerry BR (1991) The nematophagous fungus Verticillium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Revue de Nematologie 14:157-164.
7. Fatemy S, Saeidi-Naeini F, Alizadeh A (2005) In vitro screening of fungi for parasitism against sugar beet cyst nematode Hetrodera schachtii. Nematologia Mediterranea 33:185-190.
8. Gulsar Banu J, Iyer R, Gunasekaran M (2006) Mass multiplication and formulation of nematophagous fungus, Paecilomyces lilacinus. International Journal of Nematology 16:145-152.
9. Hadapad AB, Zebita CP (2006) Mass production, survival and evaluation of solid substrate inocula of Beauveria brongniartii (Saccardo) Petch against Holotrichia serrata (Coleoptera: Scarabaeidae). Communications in Agricultural and Applied Biological Scince 71:433-441.
10. Hernandez MA, Hidalgo-Díaz L (2008) KlamiC: Bionematicida agrícola producido a partir del hongo Pochonia chlamydosporia var. catenulata. Revista de Protección Vegetal 23:131-134.
11. Hussy RS, Barker K (1973) A comparison of methods collecting inocula of Meloidogyne spp., including a new technique. Plant Disease 57:1025-1028.
12. Isaac GS, El-Deriny MM, Taha RG (2021). Efficacy of Purpureocillium lilacinum AUMC 10149 as biocontrol agent against root-knot nematode Meloidogyne incognita infecting tomato plant. Brazilian Journal of Biology 84:e253451. [DOI:10.1590/1519-6984.253451] [PMID]
13. Jenkins WR (1964) A rapid centrifugal-flotataion technique for separating nematode from soil. Plant Disease 48:692-1964.
14. Karssen G, Wesemael W, Moens M (2013) Root-knot Nematodes. Pp. 73-109. In: RN Perry, M Moens (eds.). Plant Nematology. CABI Publishing, Wallingford, UK. [DOI:10.1079/9781780641515.0073]
15. Khan A, Williams KL, Nevalainen HKM (2006) Infection of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum. Biological Control 51:659-678. [DOI:10.1007/s10526-005-4242-x]
16. Luambano ND, Manzanilla-López RH, Powers SJ, Wanhoji JW, Narla RD (2019) Screening of locally available organic materials as substrates for production of Pochonia chlamydosporia in Kenya. Biological Control 133:18-25. [DOI:10.1016/j.biocontrol.2019.03.001]
17. Moens M, Perry RN, Starr JL (2009) Meloidogyne Species - A Diverse Group of Novel and Important Plant Parasites. Pp.1-17. In: RN Perry, M Moens, JL Starr (eds.). Root-Knot Nematodes. CABI Publishing, Wallingford, UK. [DOI:10.1079/9781845934927.0001] [PMID] [PMCID]
18. Moosavi MR (2020) Efficacy of Microbial Biocontrol Agents in Integration with other Managing Methods against Phytonematodes. Pp. 229-258. In: RA Ansari, R Rizvi, I Mahmood (eds.). Management of Phytonematodes-Recent Advances and Future Challenges. Springer, Singapore. [DOI:10.1007/978-981-15-4087-5_10]
19. Moosavi MR, Askary TH (2015) Nematophagous Fungi Commercialization. Pp. 187-202. In: TH Askary, PRP Martinelli (eds.). Biocontrol Agents of Phytonematodes. CABI Publishing, Wallingford, UK. [DOI:10.1079/9781780643755.0187]
20. Moosavi MR, Ghani M (2019) The optimal concentrations of Purpureocillium lilacinum and jasmonic acid in controlling Meloidogyne javanica on tomato. Archives of Phytopatology and Plant Protection 52:582-600. [DOI:10.1080/03235408.2018.1557375]
21. Moosavi MR, Minassian V (2021) Microbial Biopecticides - Opportunities and Challenges. Pp.535-550. In: J Karimi, H Madadi (eds.). Biological Control of Insect Pests in Iran, A Review of Fundamental and Applied Aspects. Springer, Cham, Switzerland. [DOI:10.1007/978-3-030-63990-7_14]
22. Moosavi MR, Zare R (2020) Fungi as Biological Control Agents of Plant-Parasitic Nematodes. Pp. 333-384. In: JM Merillon, KG Ramawat (eds.) Plant Defence: Biological Control. Progress in Biological Control 22. Springer, Cham. [DOI:10.1007/978-3-030-51034-3_14]
23. Nico AI, Jimenz RM, Castillo P (2004) Control of root knot nematodes by composted agroindustrial wastes in potting mixtures. Crop Protection 23:581-587. [DOI:10.1016/j.cropro.2003.11.005]
24. Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S Maafi T (2011) Current Nematode Threats to World Agriculture. Pp. 21-43. In: JT Jones, G Gheysen, C Fenoll (eds.). Genomics and Molecular Genetics of Plant Nematode Interactions. Springer, Dordrecht, the Netherlands. [DOI:10.1007/978-94-007-0434-3_2]
25. Perry RN (2002) Hatching. Pp.147-169. In: LD Lee (ed.). the Biology of Nematodes, Taylor and Francis, London. [DOI:10.1201/b12614-7]
26. Prabhu S, Kumar S, Subramanian S (2008) Mass production and commercial formulation of Paecilomyces lilacinus. Indian Journal of Nematology 38:131-133.
27. Sahayaraj K, Namasivayam SKR (2008) Mass production of entomopathogenic fungi using agricultural products and by products. African Journal of Biotechnology 7:1907-1910. [DOI:10.5897/AJB07.778]
28. Schisler DA, Jackson MA, Bothast RJ (1991) Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease in Sesbania exaltata. Phytopathology 81:458-461. https://doi.org/10.1094/Phyto-81-587 [DOI:10.1094/Phyto-81-458]
29. Sikora RA, Fernandez E (2005) Nematode Parasites of Vegetables. Pp. 319-392. In: M Luc, RA Sikora, J Bridge (eds.). Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CABI Publishing, Wallingford, UK. [DOI:10.1079/9780851997278.0319]
30. Silva SD, Carneiro SA, RAMDG, Faria M, Souza DA, Monnerat RG, Lopez RB (2017) Evaluation of Pochonia chlamydosporia and Purpureocillium lilacinum for suppression of Meloidogyne enterolobii on tomato and banana. Journal of Nematology 49:77-85. [DOI:10.21307/jofnem-2017-047] [PMID] [PMCID]
31. Singh S, Pandey RK, Goswami BK (2013) Bio-control activity of Purpureocillium lilacinum strains in managing root-knot disease of tomato caused by Meloidogyne incognita. Biological control Scince and Technology 23:1469-1489. [DOI:10.1080/09583157.2013.840770]
32. Sokhandani Z, Moosavi SMR, Basirnia T (2016) Optimum level s of Trichoderma longibrachiatum concentration and cadusafos dose in controlling Meloidogyne javanica on zucchini plants. Journal of Nematology 48:54-63. [DOI:10.21307/jofnem-2017-009] [PMID] [PMCID]
33. Verma AC, Singh HK, Khan A (2004) Evaluation of substrates for mass multiplication of Paecilomyces lilacinus. Annals of Plant Protection Sciences 12:459-460.
34. Yang F, Abdelnabby H, Xiao Y (2015) The role of a phospholipase (PLD) in virulence of Purpureocillium lilacinum (Paecilomyces lilacinum). Microbial Pathogenesis 85:11-20. [DOI:10.1016/j.micpath.2015.05.008] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb