Volume 9, Issue 1 (3-2020)                   pps 2020, 9(1): 1-14 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadifar S, Hosseini S M, Mohammadi Goltapeh E, Jahedi A. (2020). Optimal method for production of mycelia biomass of Ganoderma lucidum in sugarcane molasses. pps. 9(1), 1-14. doi:10.29252/pps.9.1.1
URL: http://yujs.yu.ac.ir/pps/article-1-289-en.html
Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran , emgoltapeh@gmail.com
Abstract:   (4416 Views)
Ahmadifar S , Hosseini SM, MohammadiGoltapeh E, Jahedi A (2020) Optimal method for production of mycelia biomass of Ganoderma lucidum in sugarcane molasses. Plant Pathology Science 9(1):1-14. DOI: 10.2982/PPS.9.1.1.
Introduction: Ganoderma lucidum, medicinal mushroom, is one of the most effective traditional medicine in East Asia. The mycelium, the spore and the basidiocarp contain about 400 different bioactive compounds with polysaccharides, peptidoglycans and triterpenes as active ingredient groups of medical value. Underwater cultivation is one of the most reliable technologies to produce the industrial biomass of this mushroom, which contains anti-tumor and anti-cancer polysaccharides. Regarding the growth of fungal mycelium, it is related to various environmental factors such as pH, temperature and available nutrients. The aim of this study was to determine the influence of pH, temperature and different concentrations of the carbon and nitrogen sources on the growth rate of fungal biomass in sugar cane molasses. Materials and Methods: The first part of the study dealt with the morpHological and molecular identification of an Iranian isolate from G. lucidum.  Then the effects of carbon sources of arabinose, maltose, cellulose and xylose at concentrations of 0.1, 0.2 and 0.3%, and nitrogen sources of yeast extract, MgSo4.7H2O, peptone and K2Hpo4 at concentrations of 0.2, 0.3 and 0.4%, pH 4, 4.5, 5 and 5.5, and a temperature of 25° C, 28° C, 32 ° C and the number of 2, 3, and 4 inoculum particles of 5 mm2 for the production of mycelium biomass of G. lucidum, in sugarcane molasses was studied, in completely randomized design experiments with four replicates for each treatment in vitro. Results: A comparison of the mean dry weight mycelium of G. lucidum produced with different treatments showed the significant differences between the treatments with a probability of 5%. The highest yield of G. lucidum was obtained in peptone with concentration of 0.3%, maltose with concentration of 0.2%, pH=5, 3 inoculum particles with 5mm2 diameter, at 28°C. Conclusion: Sugar cane molasses can be used as a cheap and inexpensive medium for the biomass production of G. lucidum. For the first time this study showed that by adding peptone with concentration of 0.3%, maltose with concentration of 0.2%, to sugarcane molasses, with 3 particles of inoculum with 5mm2 diameter, in pH=5, and 28°C, the highest biomass of this medicinal mushroom could be produced.
Full-Text [PDF 952 kb]   (1545 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/11/9 | Accepted: 2020/02/1

1. Tavana M, Azizi M, Farsi M, Banesh F (2012) Optimization of medium composition for efficient production of mycelial biomass and extracellular polysaccharides in the submerged culture of Ganoderma lucidum. Iranian Journal of Medicinal and Aromatic Plants 28(3): 423-433.
2. Bao X, Fang J, Li X (2001) Structural characterization and immunomodulating activity of a complex glucan from spores of Ganoderma lucidum. Bioscience, Biotechnology and Biochemistry 65(11):2384-2391. [DOI:10.1271/bbb.65.2384]
3. Barbieri A, Quagliariello V, Del Vecchio V, Falco M, Luciano A, Amruthraj N, Arra C (2017) Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients 9(3):210. https://doi.org/10.3390/nu9030210 [DOI:10.3390/nu9030210‏]
4. Boh B, Berovic M, Zhang J, Zhi-Bin L (2007) Ganoderma lucidum and its pHarmaceutically active compounds. Biotechnology Annual Review 13: 265-301. [DOI:10.1016/S1387-2656(07)13010-6]
5. Chen T, Jie Z X (2001) Taurine in the spores and extract powder of log cultivated Ganoderma lucidum. Acta Edulis Fungi 8: 45-46.
6. Cör D, Knez Ž, Knez Hrnčič M (2018) Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides: A review. Molecules 23(3):649. [DOI:10.3390/molecules23030649]
7. Crueger W, Crueger A (1984) Biotechnology, A Text Book of Industrial Microbiology. Science Tech. Inc., Madison, Wisconsin 180(1):308. [DOI:10.1016/0014-5793(85)80255-6]
8. Fang Q H, Zhong J J (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry 37(7):769-774. [DOI:10.1016/S0032-9592(01)00278-3]
9. Feng Y L, Li W Q, Wu, X Q, Cheng J W, Ma S Y (2010) Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morpHologies. Biochemical Engineering Journal 49(1):104-112. [DOI:10.1016/j.bej.2009.12.002]
10. Hughes D H, Lynch D L, Somers G F (1958) Mushroom analysis, chromatographic identification of the amino acids and carbohydrates in the cultivated mushroom Aqaricus Campestris L. ex-Fries. Journal of Agricultural and Food Chemistry 6(11):850-853.‏ [DOI:10.1021/jf60093a009]
11. Jonathan S G, Fasidi I O (2001) Effect of carbon, nitrogen and mineral sources on growth of Psathyerella atroumbonata (Pegler), a Nigerian edible mushroom. Food Chemistry 72(4): 479-483. [DOI:10.1016/S0308-8146(00)00265-X]
12. Jong S C, Birmingham J M (1992) Medicinal benefits of the mushroom Ganoderma lucidum. Advances in Applied Microbiology. 37: 101-134. [DOI:10.1016/S0065-2164(08)70253-3]
13. Kotzamanidis C H, Roukas T, Skaracis G (2002) Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal of Microbiology and Biotechnology 18(5): 441-448. [DOI:10.1023/A:1015523126741]
14. Lai T, Gao Y, Zhou S (2004) Global marketing of medicinal Ling Zhi mushroom Ganoderma lucidum (W. Curt.: Fr.) Lloyd (Aphyllophoromycetideae) products and safety concerns. International Journal of Medicinal Mushrooms 6(2)189-194. [DOI:10.1615/IntJMedMushr.v6.i2.100]
15. Lee B C, Bae J T, Pyo H B, Choe T B, Kim S W, Hwang H J, Yun J W (2004) Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme and Microbial Technology 35(5):369-376. [DOI:10.1016/j.enzmictec.2003.12.015]
16. Nasreen Z, Kausar T, Nadeem M, Bajwa R (2005) Study of different growth parameters in Ganoderma lucidum. Micología Aplicada International 17(1): 5-8.
17. Pilotti C A, Sanderson F R, Aitken E A, Armstrong W (2004) MorpHological variation and host range of two Ganoderma species from Papua New Guinea. Mycopathologia 158(2): 251-265.‏ [DOI:10.1023/B:MYCO.0000041833.41085.6f]
18. Roukas T (1998) Pretreatment of beet molasses to increase pullulan production. Process Biochemistry 33(8): 805-810. [DOI:10.1016/S0032-9592(98)00048-X]
19. Shah Pooja, Modi A (2018) Optimization of Culture Conditions for Biomass Production of Ganoderma lucidum. International Journal of Current Microbiology (7)2:1882-1889. [DOI:10.20546/ijcmas.2018.702.227]
20. Shih L, Pan K, Hsieh C (2006) Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochemistry 41(5):1129-1135. [DOI:10.1016/j.procbio.2005.12.005]
21. Suberu H A, Lateef A A, Bello I M, Daudu O A Y (2013) Mycelia biomass yield of Ganoderma lucidum mushroom by submerged culture. Nigerian Journal of Technological Research 8(2):64-67. [DOI:10.4314/njtr.v8i2.96700]
22. Supramani S, Ahmad R, Ilham Z, Annuar M S M, Klaus A, Wan-Mohtar W A A Q (2019) Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology. AIMS Microbiology 5(1):19-38. [DOI:10.3934/microbiol.2019.1.19]
23. Takashaki M (1996) Studies on bioactive substances and medical effect of Reishi (Ganoderma lucidum). Foods and Food Ingredients Journal of Japan 167:69-85.
24. Wachtel-Galor S, Yuen J, Buswell J A, Benzie I F (2011) Ganoderma lucidum (Lingzhi or Reishi). In Herbal Medicine Biomolecular and Clinical Aspects. 2nd edition. CRC Press/Taylor and Francis.
25. Wan W A A Q I, Latif N A, Harvey L M, McNeil B (2016) Production of exopolysaccharide by Ganoderma lucidum in a repeated-batch fermentation. Biocatalysis and Agricultural Biotechnology 6:91-101. [DOI:10.1016/j.bcab.2016.02.011]
26. Wasser S P, Sokolov D, Reshetnikov S V, Timor-Tismenetsky M (2000) Dietary supplements from medicinal mushrooms: diversity of types and variety of regulations. International Journal of Medicinal Mushrooms. 2(1):1-19. [DOI:10.1615/IntJMedMushr.v2.i1.10]
27. White J (1954) Yeast Technology. Chapman and Hall, Ltd., London.
28. Xu P, Ding Z Y, Qian Z, Zhao C X, Zhang K C (2008) Improved production of mycelial biomass and ganoderic acid by submerged culture of Ganoderma lucidum SB97 using complex media. Enzyme and Microbial Technology 42(4):325-331. [DOI:10.1016/j.enzmictec.2007.10.016]
29. Zárate-Chaves C A, Romero-Rodríguez M C, Niño-Arias F C, Robles-Camargo J, Linares-Linares M, Rodríguez-Bocanegra M X, Gutiérrez-Rojas I (2013) optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum. Brazilian Journal of Microbiology 44(1):215-223. [DOI:10.1590/S1517-83822013005000032]
30. Moradali MF, Hedjaroude G-A, Mostafavi H, Abbasi M, Ghods S, Sharifi Tehrani A (2007) The genus Ganoderma (Basidiomycota) in Iran. Mycotaxon 99:251-69.
31. Steyaert RL (1972) Species of Ganoderma and related genera mainly of the Bogor and Lieden herbaria. Persoonia 7:55-118.
32. Rogers S O, Bendich A J (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology 5(2):69-76.‏ [DOI:10.1007/BF00020088]
33. Liu S R, Ke B R, Zhang W R, Liu X R, Wu X P (2017) Breeding of new Ganoderma lucidum strains simultaneously rich in polysaccharides and triterpenes by mating basidiospore-derived monokaryons of two commercial cultivars. Scientia Horticulturae 216:58-65.‏ [DOI:10.1016/j.scienta.2016.12.016]
34. Güler P, Kutluer F, Kunduz İ (2011) Screening to Mycelium Specifications of Ganoderma lucidum (Fr.) Karst (Reishi). Hacettepe Journal of Biology and Chemistry 39(4): 397-401.
35. Badalyan S M, Shnyreva A V, Lotti M, Zambonelli A (2015) Genetic resources and mycelial characteristics of several medicinal polypore mushrooms (Polyporales, Basidiomycetes). International Journal of Medicinal Mushrooms 17(4):371-384. [DOI:10.1615/IntJMedMushrooms.v17.i4.60]
36. Galli E F D M, Di Mario F, Rapana P, Lorenzoni P, Angelini R (2003) Copper biosorption by Auricularia polytricha. Letters in Applied Microbiology. 37(2):133-137.‏ [DOI:10.1046/j.1472-765X.2003.01354.x]
37. Xu, C P, Yun J W (2003) Optimization of submerged‐culture conditions for mycelial growth and exo‐biopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and regression analysis. Biotechnology and Applied Biochemistry 38(2):193-199.‏ [DOI:10.1042/BA20030020]
38. Feng J, Zhang J S, Feng N, Yan M Q, Yang Y, Jia W, Lin C C (2017) A novel Ganoderma lucidum G0119 fermentation strategy for enhanced triterpenes production by statistical process optimization and addition of oleic acid. Engineering in Life Sciences 17(4): 430-439.‏ [DOI:10.1002/elsc.201600071]
39. Postemsky P D, Delmastro S E, Curvetto N R (2014) Effect of edible oils and Cu (II) on the biodegradation of rice by-products by Ganoderma lucidum mushroom. International Biodeterioration and Biodegradation 93:25-32.‏ [DOI:10.1016/j.ibiod.2014.05.006]
40. Priatni S, Kosasih W, Budiwati T A, Ratnaningrum D (2017) Production of peptone from boso fish (Oxyeleotris marmorata) for bacterial growth medium. In IOP Conference Series: Earth and Environmental Science 60(1):12009.‏ [DOI:10.1088/1755-1315/60/1/012009]
41. Yee W (2015) Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16. Bioresource Technology 196:1-8.‏ [DOI:10.1016/j.biortech.2015.07.033]
42. Ozmihci S, Kargi F (2007) Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresource Technology 98(16): 2978-2984.‏ [DOI:10.1016/j.biortech.2006.10.005]
43. Zhang Y Y, Bu Y F, Liu J Z (2015) Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum. Folia Microbiologica 60(5): 393-398.‏ [DOI:10.1007/s12223-014-0371-x]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb