year 6, Issue 2 (9-2017)                   pps 2017, 6(2): 55-67 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samavat S. Biological Control of Rhizoctonia Damping-off Disease. pps. 2017; 6 (2) :55-67
URL: http://yujs.yu.ac.ir/pps/article-1-174-en.html
Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran , samavat.samaneh@gmail.com
Abstract:   (1803 Views)
Biological control of Rhizoctonia damping-off disease. Plant Pathology Science 6(2):55-67.

Damping-off caused by Rhizoctonia solani J. G. Kühn is a very important plant disease among soil-borne diseases that make severe damages on a wide range of plants in the world. Biological control of this disease with Trichoderma, Gliocladium, Bacillus, Pseudomonas and Rhizobium species has been reported as a successful management method. The results of some researches on this area and the mechanisms of the effect of these antagonistic fungi and bacteria are described here.
 
Full-Text [PDF 513 kb]   (229 Downloads)    
Type of Study: Research | Subject: Special

References
1. Blazier S. R. and Conway K. E. 2004. Characterization of Rhizoctonia solani isolates associated with patch diseases on turf grass. In Proceedings of the Oklahoma Academy of Science 84:41-51.
2. Burpee L. L. and Martin B. 1992. Biology of Rhizoctonia species associated with turf grasses. Plant Disease 76:112-117. [DOI:10.1094/PD-76-0112]
3. Carling D. E., Baird R. E., Gitaitis R. D., Brained K. A. and Kuninaga S. 2002. Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. District Control Pest Management 92:893-899.
4. Caroll H., Moenne-Loccoz Y., Dowling D. and Ogara F. 1995. Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugar beets. Applied Environmental Microbiology 61:3002-3007.
5. Ceresini P. C., Shew H. D. and Cubeta M. A. 1999. RFLP analysis of the PCR amplified ribosomal DNA regions ITS and IGS indicated that isolates of Rhizoctonia solani from potato and tobacco represent distinct groups within the anastomosis group 3. Phytopathology 89: S12.
6. Claydon N., Allan M., Itanson J. R. and Avent A. G. 1987. Antifungal alkyl pyrones of Trichoderma harzianum. Transactions of the British Mycological Society 88:503-513. [DOI:10.1016/S0007-1536(87)80034-7]
7. Cruz J., Hildalgo-Gallego A., Lora J. M., Benitez T., Pintor-Toro J. A. and Llobel A. 1992. Isolation and characterization of three chitinases from Trichoderma harzianum. European Journal of Biochemical 206:859-867. [DOI:10.1111/j.1432-1033.1992.tb16994.x]
8. Dennis C. and Webster J. 1971. Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society 57:41-48. [DOI:10.1016/S0007-1536(71)80078-5]
9. Dowling D. N. and O'Gara. F. 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends in Biotechnology 12:133-141. [DOI:10.1016/0167-7799(94)90091-4]
10. Dunlap C., Delaney I., Fenton A., Lohrke S., Moënne-Loccoz, Y. and O'Gara F. 1996. The Biotechnology And Application Of Pseudomonas Inoculants For The Biocontrol Of Phytopathogens. pp. 441-448. In: G., Stacey B., Mullin P. M. Gresshoff (ed.). Biology of Plant Microbe Interactions. St Paul, MN, USA.
11. Elad Y., Barak R. and Henis Y. 1983. Ultrastructural studies of the interaction between Trichoderma spp. and plant pathogenic fungi. Phytopathologische Zeitschrift 107:168-175. [DOI:10.1111/j.1439-0434.1983.tb00064.x]
12. Elad Y., Sadwosky Z. and Chet I. 1987. Scanning electron microscopical observations of early stages of interaction of Trichoderma harzianum and Rhizoctonia solani. Transactions of the British Mycological Society 88:259-263. [DOI:10.1016/S0007-1536(87)80223-1]
13. El-Samawaty A. M. A., Amal A., Asran M. R. and Omar Abd-Elsalam K. A. 2008. Anastomosis Groups, Pathogenicity, and Cellulase Production of Rhizoctonia solani from Cotton. Pest Technology 1:117-124.
14. Faull J. L., Graeme-Cook K. A. and Pilkington B. L. 1994. Production of an isonitrille antibiotic by an UV-induced mutant of Trichoderma harzianum. Phytochemistry 36:1273-1276. [DOI:10.1016/S0031-9422(00)89649-1]
15. Galli E., Silver S. and Witholt B. 1992. Pseudomonas: molecular biology and biotechnology. Washington DC, UK, American Society for Microbiology. 301-313.
16. Ge Y., Huang X., Wang S., Zhang X. and Xu Y. 2004. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiology Letters 237:41-47. [DOI:10.1111/j.1574-6968.2004.tb09676.x]
17. Girard G., Lugtenberg B. J. J. and Bloemberg G. V. 2006. Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology 152:43-58. [DOI:10.1099/mic.0.28284-0]
18. Gutterson N. 1990. Microbial fungicides: recent approaches to elucidating mechanisms. Critical Reviews in Microbiology 10:69-91. [DOI:10.3109/07388559009038205]
19. Hagedorn C., Gould W. D. and Bradinelli R. T. 1989. Rhizobacteria of cotton and their repression of seedling disease pathogens. Applied Environmental Microbiology 55:2793-2797.
20. Harman G. E., Howell, Ch. R., Viterbo A., Chet I. and Lorito Mateo. 2004. Trichoderma species: opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2:43-56. [DOI:10.1038/nrmicro797]
21. Henis Y. and Inbar M. 1986. Effect of Bacillus subtilis on growth and sclerotium formation by Rhizoctonia solani. Phytopathology 58:933-938.
22. Howell C. R. and Stipanovic R. D. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480-482. [DOI:10.1094/Phyto-69-480]
23. Howie W. J. and Suslow T. V. 1991. Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions 4:393-399. [DOI:10.1094/MPMI-4-393]
24. Kandula D. R., WJones E. E., Stewart A., McLean K. L. and Hampton J. G. 2015. Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Science and Technology 25:1052-1069. [DOI:10.1080/09583157.2015.1028892]
25. Keel C. and Defago G. 1997. Interactions Between Beneficial Soil Bacteria and Root Pathogens: Mechanisms and Ecological Impact. In: Pp: 27-46. A. G. Gange. And V. K. Brown (ed.). Multitrophic Interactions in Terrestrial Systems. Blackwell Scientific, London.
26. Keel C., Schnider U., Maurhofer M., Voisard C., Laville J., Burger U., Wirthner P., Hass D. and Defago G. 1992. Suppression of root disease by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant-Microbe Interactions 5:4-13. [DOI:10.1094/MPMI-5-004]
27. Khabbaz S. E., Zhang L., Cáceres L. A., Sumarah M., Wang A. and Abbas P. A. 2015. Characterisation of antagonistic bacillus and pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Annals of Applied Biology 166:456-471. [DOI:10.1111/aab.12196]
28. Lee J., Bricker T. M., Lefevre M., Pinson S. R. M. and Oard J. H. 2006. Proteomic and genetic approaches to identifying defencerelated proteins in rice challenged with the fungal pathogen Rhizoctonia solani. Molecular Plant Pathology 7:405-416. [DOI:10.1111/j.1364-3703.2006.00350.x]
29. Leong J. 1986. Siderophores: their biochemistry and possible role in biocontrol of plant pathogens. Annual Review of Phytopathology 24:187- 209. [DOI:10.1146/annurev.py.24.090186.001155]
30. Loper J. E. 1988. Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166-172. [DOI:10.1094/Phyto-78-166]
31. Lorito M., Hayes C. K., Dipietro A., Woo S. L. and Harman G. E. 1993. Purification, characterization and synergistic activity of a glucan-b-1,3-glucosidase and a N-acetyl-B-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398-405. [DOI:10.1094/Phyto-84-398]
32. Lugtenberg B. J. J., de Weger L. A. and Bennett J.W. 1991a. Microbial stimulation of plant growth and protection from disease. Current Opinion in Biotechnology 2:457-464. [DOI:10.1016/S0958-1669(05)80156-9]
33. Lugtenberg- B. J. J., Dekkers L. C., Bansraj M., Bloemberg G. V. Camacho M., Chin-A-Woeng T. F. C., Van Den Hondel C., Kravchenko L., Kuiper I., Lagopodi A. L., Mulders I., Phoelich C., Ram A., Tikhonovich I., Tuinman S., Wijffelman C. and Wijfjes A. 1999b. Pseudomonas Genes and Traits Involved in Tomato Root Colonization. Biology of Plant–Microbe Interactions 2:25-30.
34. Nagarajkumar M., Bhaskaran R. and Velazhahan R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiology Research 159:73–81. [DOI:10.1016/j.micres.2004.01.005]
35. Nandakumar R., Babu S.R., Viswanathan J., Sheela T., Raguchander S. and Samiyappan R. 2001. A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol 46:493-510. [DOI:10.1023/A:1014131131808]
36. Ogoshi A. 1996. Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. In: PP. 1-9. B., Sneh S., Jabaji-Hare S., Neate G., Dijst Kluwer (ed.). Academic The Genus Rhizoctonia. Publishers, Dordrecht.
37. Ogoshi A., Oniki M., Araki, T. and Ui T. 1983. Studies on the anastomosis groups of binucleate Rhizoctonia and thier perfect states. Journal of the Faculty of Agriculture, Hokkaido University, Japan 61:244-260.
38. Pieterse C. M. J., Van Pelt J. A., Van Wees S. C. M. Ton J., Leon-Kloosterziel K. M., Keurentjes J. J. B., Verhagen B. W. M., Van Knoester M. D. S. I., Bakker P. A. H. M. and Van Loon L. C. 2001. Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. European Journal of Plant Pathology 107:51-61. [DOI:10.1023/A:1008747926678]
39. Reithner B., Schuhmacher R., Stoppacher N., Pucher M., Brunner K. and Zeilinger S. 2007. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genetic Biology 44:1123–1133. [DOI:10.1016/j.fgb.2007.04.001]
40. Samavat S., Besharati H. and Behboudi K. 2011. Interactions of Rhizobia cultural filtrates with Pseudomonas fluorescens on bean damping-off control. Journal of Agricultural Science Technology 13:965-976.
41. Samavat S., Heydari A., Zamanizadeh H.R., Rezaee S. and Alizadeh Aliabadi A. 2014a. A comparison between Pseudomonas aureofaciens and P. fluorescens in biological control of cotton seedling damping-off disease. Journal of Plant Protection Research 54:115-121. [DOI:10.2478/jppr-2014-0050]
42. Samavat S., Heydari A., Zamanizadeh H.R., Rezaee S. and Alizadeh Aliabadi A. 2014b. Application of new bioformulations of Pseudomonas aureofaciens for biocontrol of cotton seedling damping-off. Journal of Plant Protection Research 54:334-339. [DOI:10.2478/jppr-2014-0050]
43. Schippers B. and Gams W. 1979. Soil-Borne Plant Pathogens. 685p.
44. Schippers B., Bakker A. W. and Bakker P. A. H. M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology 25:339-358. [DOI:10.1146/annurev.py.25.090187.002011]
45. Sivan A. and Chet I. 1989. Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum. Journal of General Microbiology 135:675-682. [DOI:10.1099/00221287-135-3-675]
46. Van Loon L. C., Bakker P. A. H. M. and Pieterse C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36:453- 483. [DOI:10.1146/annurev.phyto.36.1.453]
47. Vargas S., Gil R., Haro C., Oddino M., Kearney M., Zuza A. and Marinelli G. J. 2008. Crop management practices in the control of peanut diseases caused by soilborne fungi. Crop Protection 27: 1-9. [DOI:10.1016/j.cropro.2007.03.010]
48. Voisard C., Keel C., Haas D. and De`fago G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. The EMBO Journal 8:351-358.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2020 All Rights Reserved | University of Yasouj Journals System Plant Pathology Science

Designed & Developed by : Yektaweb