Volume 3, Issue 2 (3-2017)                   jfer 2017, 3(2): 27-41 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Homayounfar S, Zolfaghari R, Fayyaz P. (2017). Physiological Responses to Cold Stress in Different Provenances of Pistacia atlantica Seedlings. jfer. 3(2), 27-41.
URL: http://yujs.yu.ac.ir/jzfr/article-1-107-en.html
Associate Professor, Department of Forestry, Faculty of Agriculture, Yasouj University, Yasuj, Iran , zolfaghari@yu.ac.ir
Abstract:   (6888 Views)
Background and objectives: Plant species with wide geographic ranges, exhibit high tolerance to cold stress. Trees in temperate regions must cope with freezing temperatures, especially in late autumn and winter. One of the mechanisms to tolerate cold stress is through decreasing photoperiod and temperature during acclimation. In addition, provenance of a species could be one of the main factors contributing to cold resistance. Therefore, in the present study, the effect of cold stress on physiological responses of Pistacia atlantica seedlings from three provenances was investigated in southern Zagros to select the most cold-resistant provenance.Material and methods: Seeds of three provenances, namely Margon, Noor Abad and Yasuj, from southern Zagros, were collected and planted in pots. After germination of seeds, induction of acclimation was carried out at two stages for four weeks. This was accomplished through the simulation of temperature and photoperiod of Yasuj region from September to November. Following that, the indexes of photosystem efficiency and chlorophyll content were measured. After each acclimation stage, leaves and stems of seedlings were exposed to three levels of temperature, +4°C (control), -20°C for one hour, and -20 for two hours. Then, relative water content (RWC) and electrolyte leakage (EL) of stems and leaves were measured. This study was conducted as a factorial with three factors of provenance (three levels), cold treatments (three levels) and acclimation (two levels), adopting a completely random design.Results: The results showed that EL increased with decreases in temperature and this increase was the highest in the case of the Noor Abad provenance. In addition, the stem RWC of Yasuj and Margoon provenances decreased in the second cold acclimation stage. Chlorophyll content, photosystem efficiency and electron transport rate were lower in Noor Abad provenance, compared with other two provenances. Moreover, except the electron transport rate, all fluorescence parameters significantly decreased during the cold acclimation. Conclusion: The results showed that measuring EL and fluorescence parameters could be a useful indicator for identifying cold-tolerant provenances. The seedlings of Noor Abad provenance exhibited the least and Margoon provenance showed the highest resistance to cold stress. This could be due to high altitude and cold climate of Margoon provenance.
 
Full-Text [PDF 665 kb]   (2280 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/10/31 | Accepted: 2018/04/11

References
1. سی و سه مرده، ع.، فاتح ح. و بدخشان، ه. 1393. واکنش سرعت فتوسنتز، پایداري غشاء و فعالیت آنزیم‌هاي آنتی اکسیدانت به تنش خشکی و کود ازته در دو رقم جو(Hordeum vulgare) تحت شرایط کنترل شده. نشریه پژوهش‌هاي زراعی ایران، 12(2): 227-215.
2. سیدی، ن.، علیجانپور، ا. زرگران، م.ر. و بانج‌شفیعی، ع. 1391. تأثیر تنش‌های محیطی برفلورسانس کلروفیل. اولین کنفرانس ملی راهکارهای دستیابی به توسعه پایدار (کشاورزی، منابع طبیعی و محیط زیست)، تهران. 7-1 ص.
3. نظامی، ا.، برزویی، ا.، جهانی، م.، عزیزی، م. و موسوی م.ج. 1388. ارزیابی تحمل به یخ‌زدگی ارقام کلزا پس از خوسرمائی در شرایط کنترل‌شده. نشریه پژوهش‌هاي زراعی ایران، 7(2): 722-711.
4. Adams, W.W., Demmig-Adams, B., Winter, K. & Schreiber, U. 1990. The ratio of variable to maximum chlorophyll fluorescence from photosystem II, measured in leaves at ambient temperature and at 77K, as an indicator of the photon yield of photosynthesis. Planta, 180(2): 166-174. [DOI:10.1007/BF00193991]
5. Almeida, M.H., Chaves, M.M. & Silva, J.C. 1994. Cold acclimation in eucalypt hybrids. Tree Physiology, 14(7-8-9): 921-932. [DOI:10.1093/treephys/14.7-8-9.921]
6. Aranda, I., L. Castro, R. Alia, J.A. Pardos & L. Gil. 2005. Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiology, 25(8): 1085-1090.‏ [DOI:10.1093/treephys/25.8.1085]
7. Bolhar-Nordenkampf, H.R., Long, S.P., Baker, N.R., Oquist, G., Schreiber, U. L. & Lechner, E.G. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecology, 497-514. [DOI:10.2307/2389624]
8. Chawade, A. 2011. Unravelling the complexity of cold acclimation in plants. Department of Cell and Molecular Biology, Goteborg University, Box 462, SE-405 30 Goteborg, Sweden.
9. Esra, K.O.C., Islek, C. & Ustun, A.S. 2010. Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. Gazi University Journal of Science, 23(1): 1-6.
10. Gomory, D., Foffová, E., Kmeť, J., Longauer, R. & Romšáková, I. (2010). Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: adaptation or acclimation?. Acta Biologica Cracoviensia Series Botanica, 52(2): 42-49. [DOI:10.2478/v10182-010-0022-8]
11. Guardia, M., Díaz, R., Savé, R. & Aletà, N.. 2010. Cold resistance evaluation in different species and provenances of Juglans sp.‏ Research & Technology Food & Agriculture (IRTA).
12. Huebert, C.A. and H.B. Envs. 2004. The ecological and conservation genetics of gray oak (Quercus garryana Dougl. ex Hook). M.Sc. Thesis.,University of britishColombia, Vancouver.
13. Inze, D. & VanMontagu, M. 1995. Oxidative stress in plants. Current Opinion in Biotechnology, 6(2): 153-158. [DOI:10.1016/0958-1669(95)80024-7]
14. Janska, A., Maršík, P., Zelenková, S., & Ovesná, J. 2010. Cold stress and acclimation-what is important for metabolic adjustment?. Plant Biology, 12(3): 395-405. [DOI:10.1111/j.1438-8677.2009.00299.x]
15. Jiang, X., Song, Y., Xi, X., Guo, B., Ma, K., Wang, Z., ... & Zhang, Z. 2011. Physiological and biochemical responses to low temperature stress in hybrid clones of Populus ussuriensis Kom.× P. deltoides Bartr. African Journal of Biotechnology, 10(82): 19011-19024. [DOI:10.5897/AJB11.2081]
16. Konttinen, K., Luoranen, J.A. & Rikala, R. 2007. Growth and frost hardening of Picea abies seedlings after various night length treatments. Baltic Forestry, 13(2): 140-148.
17. Levitt, J.J. 1980. Responses of plants to environmental stresses, Radiation, salt and other stresses. 2nd edition Academic press Inc. London, United Kingdom, 488p.
18. Li, C., T. Puhakainen, A. Welling, A. Vihera-Aarnio, A. Ernstsen, O. Junttila, P. Heino and E.T. Palva. 2002. Cold acclimation in silver birch (Betula pendula). Development of freezing tolerance in different tissues and climatic ecotypes. Physiologia Plantarum, 116(4): 478-488.‏ [DOI:10.1034/j.1399-3054.2002.1160406.x]
19. Malone, S.R. & Ashworth, E.N. 1991. Freezing stress response in woody tissues observed using low-temperature scanning electron microscopy and freeze substitution techniques. Plant Physiology, 95(3): 871-881. [DOI:10.1104/pp.95.3.871]
20. Mancuso, S. 2000. Electrical resistance changes during exposure to low temperature measure chilling and freezing tolerance in olive tree (Olea europaea L.) plants. Plant, Cell and Environment, 23(3): 291-299. [DOI:10.1046/j.1365-3040.2000.00540.x]
21. Maxwell, K. & Johnson, G.N. 2000. Chlorophyll fluorescence - a practical guide. Journal of experimental Botany, 51(345): 659-668.‏ [DOI:10.1093/jxb/51.345.659]
22. Metcalf, E.L., Cress, C.E. Plien, R.C. & Everson, E.H. 1970. Relationship between crown moisture content and killing temperature for three wheat and three barley cultivars. Crop Science, 10(4): 362-365. [DOI:10.2135/cropsci1970.0011183X001000040013x]
23. Mishra, A., Heyer, A.G. & Mishra, K.B. 2014. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. Plant Methods, 10(1): 38.‏ [DOI:10.1186/1746-4811-10-38]
24. Miura, K. & Furumoto, T. 2013. Cold signaling and cold response in plants. International Journal of Molecular Sciences, 14(3): 5312-5337. [DOI:10.3390/ijms14035312]
25. Mohan, M.M., S.L. Narayanan and S.M. Ibrahim. 2000. Chlorophyll stability index (CSI): its impact on salt tolerance in rice. International Rice Research Notes, 25(2): 38-39.
26. Omayma, M.I. 2014. Use of Electrical Conductivity as a Tool for Determining Damage Index of Some Mango Cultivars. International Journal of Plant and Soil Science, 3(5): 448-456. [DOI:10.9734/IJPSS/2014/8200]
27. Quellet, F. & Charron, J.B. 2013. Cold acclimation and freezing tolerance in plants. Encyclopedia of Life Sciences, 1-6. [DOI:10.1002/9780470015902.a0020093.pub2]
28. Rose, R. & Haase, D. 2002. Chlorophyll fluorescence and variations in tissue cold hardiness in response to freezing stress in Douglas-fir seedlings. New Forests, 23(2): 81-96. [DOI:10.1023/A:1015682317974]
29. Sakai, A. & C.J. Weiser. 1973. Freezing resistance of trees in north America with reference to tree regions. Ecology, 54(1): 118-126.‏ [DOI:10.2307/1934380]
30. Schutzki, R.E & Cregg, B. 2007. Abiotic plant disorders: Symptoms, signs and solutions: A diagnostic guide to problem solving. Michigan State University Extension.‏
31. Sharma, P., Sharma, N. & Deswal R. 2005. The molecular biology of the low temperature response in plants. Bioessays, 27(10): 1048-1059.‏ [DOI:10.1002/bies.20307]
32. Smilhberg, M.H. & C.J. Weiser. 1968. Patterns of variation among climatic races of red osier dogwood. Ecology, 49: 495-504. [DOI:10.2307/1934116]
33. Sundbom, E., Strand, M.& Hallgren, J.E. 1982. Temperature-induced fluorescence changes- a screening method for frost tolerance of potato (Solanum sp.). Plant Physiol, 70: 1299-1302. [DOI:10.1104/pp.70.5.1299]
34. Togun, A.O., Akparobi, S.O. & Ekanayake, I.J. 2004. Field studies on chlorophyll a fluorescence for low temperature tolerance testing of cassava (Manihot esculenta Crantz). Journal of Food Agriculture and Environment, 2(1): 166-170.
35. Warrington, I.J. & Rook, D.A. 1980. Evaluation of techniques used in determining frost tolerance of forest planting stock: a review. New Zealand Journal of Forestry, 10: 116- 32.
36. Worland, M.R. 1996. The relationship between water content and cold tolerance in the Arctic collembolan Onychiurus arcticus (Collembola: Onychiuridae). European Journal of Entomology, 93(1): 341-348.
37. Yuanyuan, M., Yali, Z. Jiang, L. & Hongbo, S. 2009. Roles of plant soluble sugars and their responses to plant cold stress. African Journal of Biotechnology, 8(10): 2004-2010.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Forest Ecosystems Researches

Designed & Developed by : Yektaweb