Volume 4, Issue 1 (9-2023)                   jste 2023, 4(1): 36-43 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Deilami M, Pournaderi P. (2023). Numerical study of forced convection heat transfer in a tube. jste. 4(1), : 4 doi:10.61186/jste.4.1.36
URL: http://yujs.yu.ac.ir/jste/article-1-123-en.html
Department of Mechanical Engineering, Yasouj University, Yasuj, Iran , sp.pournaderi@yu.ac.ir
Abstract:   (485 Views)
 Heat transfer has an effective role in industrial and engineering applications. In this study, the effect of Al2O3 nanoparticles on laminar forced convection heat transfer flow in a tube is studied. Governing Equations are discretized using the finite difference method on a staggered grid. Nanofluid flow is simulated using single-phase and mixture models. Simulation results show that the average Nusselt Number increases with an increase in the Reynolds Number. Also, by increasing the volume fraction, the average Nusselt number and consequently the heat transfer rate increases. The results of the mixture model are in better agreement with experimental results than the single-phase model.
Article number: 4
Full-Text [PDF 1361 kb]   (494 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Jung JY, Oh HS, Kwak HY. Forced convective heat transfer of nanofluids in microchannels. In ASME International Mechanical Engineering Congress and Exposition 2006 (Vol. 47861, pp. 327-332). [DOI:10.1115/IMECE2006-13851]
2. [2] Behabadi A, Pirhayati M, Khayat M. Convective heat transfer of oil based nanofluid flow inside a circular tube. International Journal of Engineering. 2014; 27(2):341-8. [DOI:10.5829/idosi.ije.2014.27.02b.18]
3. [3] Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer. 2006; 33(4):529-35. [DOI:10.1016/j.icheatmasstransfer.2006.01.005]
4. [4] Akbarzade S, Sedighi K, Farhadi M, Ebrahimi M. Experimental investigation of force convection heat transfer in a car radiator filled with SiO2-water nanofluid. International Journal of Engineering. 2014; 27(2):333-40. [DOI:10.5829/idosi.ije.2014.27.02b.17]
5. [5] Choi J, Zhang Y. Numerical simulation of laminar forced convection heat transfer of Al2O3-water nanofluid in a pipe with return bend. International Journal of Thermal Sciences. 2012; 55:90-102. [DOI:10.1016/j.ijthermalsci.2011.12.017]
6. [6] Zhao N, Yang J, Li H, Zhang Z, Li S. Numerical investigations of laminar heat transfer and flow performance of Al2O3-water nanofluids in a flat tube. International Journal of Heat and Mass Transfer. 2016; 92:268-82. [DOI:10.1016/j.ijheatmasstransfer.2015.08.098]
7. [7] Göktepe S, Atalık K, Ertürk H. Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. International Journal of Thermal Sciences. 2014; 80:83-92. [DOI:10.1016/j.ijthermalsci.2014.01.014]
8. [8] Akbari M, Galanis N, Behzadmehr A. Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer. International Journal of Thermal Sciences. 2011; 50(8):1343-54. [DOI:10.1016/j.ijthermalsci.2011.03.008]
9. [9] Fard MH, Esfahany MN, Talaie MR. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. International Communications in Heat and Mass Transfer. 2010; 37(1):91-7. [DOI:10.1016/j.icheatmasstransfer.2009.08.003]
10. [10] Hejazian M, Moraveji MK, Beheshti A. Comparative numerical investigation on TiO2/water nanofluid turbulent flow by implementation of single phase and two phase approaches. Numerical Heat Transfer, Part A: Applications. 2014; 66(3):330-48. [DOI:10.1080/10407782.2013.873271]
11. [11] Alinia M, Ganji DD, Gorji-Bandpy M. Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model. International Communications in Heat and Mass Transfer. 2011; 38(10):1428-35. [DOI:10.1016/j.icheatmasstransfer.2011.08.003]
12. [12] Anoop KB, Sundararajan T, Das SK. Effect of particle size on the convective heat transfer in nanofluid in the developing region. International Journal of Heat and Mass Transfer. 2009; 52(9-10):2189-95. [DOI:10.1016/j.ijheatmasstransfer.2007.11.063]
13. [13] Chen YJ, Li YY, Liu ZH. Numerical simulations of forced convection heat transfer and flow characteristics of nanofluids in small tubes using two-phase models. International Journal of Heat and Mass Transfer. 2014; 78:993-1003. [DOI:10.1016/j.ijheatmasstransfer.2014.07.052]
14. [14] Shahmohammadi A, Jafari A. Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on heat transfer enhancement. Frontiers of Chemical Science and Engineering. 2014; 8:320-9. [DOI:10.1007/s11705-014-1437-7]
15. [15] Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. VTT Publications. 1996; 288: 1996-2067.
16. [16] Schiller L. A drag coefficient correlation. Zeit. Ver. Deutsch. Ing.. 1933; 77:318-20.
17. [17] Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics. 1996; 126(1):202-28.n [DOI:10.1006/jcph.1996.0130]
18. [18] Bejan A, Kraus AD, editors. Heat Transfer Handbook. John Wiley & Sons; 2003.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb