Volume 4, Issue 1 (9-2023)                   jste 2023, 4(1): 14-25 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tatari A, Dehghani Firouzabadi M. (2023). A Review on inhibitory compounds and it reducing methods in bio-ethanol production from lignocellulose materials. jste. 4(1), : 2 doi:10.61186/jste.4.1.14
URL: http://yujs.yu.ac.ir/jste/article-1-115-en.html
Department of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran , a.tatari@gau.ac.ir
Abstract:   (424 Views)
The gradual reduction of fossil resources has caused increasing concern about their supply and the emission of greenhouse gases and global warming, and in this context, biofuels can play an important role in solving these problems. Meanwhile, ethanol produced from corn starch, sugarcane molasses, lignocellulosic materials and biodiesel produced from rapeseed oil are the most important commercial uses in recent years. Ethanol production is a complex biochemical process in which yeasts, fungi, and certain bacteria are able to convert fermentable sugars into ethanol, carbon dioxide, and other metabolic byproducts. These byproducts contribute to the chemical composition and sensory properties of fermented foods. Ethanol production is important in a wide range of secondary products (such as health, medical and industrial). Controlling the fermentation process is usually a prerequisite for determining the quality of the final product. In this regard, monitoring the fermentation process is a basic need to ensure effective control of variable factors at all stages of the ethanol production process. Reducing the rate of fermentation in the process of ethanol production due to inhibitory compounds is considered a fundamental and significant problem in the economics of the process. In this review paper, the main aspects of ethanol fermentation and inhibitory compounds and their reduction methods in the ethanol production process from lignocellulosic materials have been discussed.
Article number: 2
Full-Text [PDF 1158 kb]   (305 Downloads)    
Type of Study: Research | Subject: Special

1. 1] Taghizadeh-Alisaraei A, Motevali A, Ghobadian B. Ethanol production from date wastes: Adapted technologies, challenges, and global potential. Renewable Energy. 2019; 143:1094-110. [DOI:10.1016/j.renene.2019.05.048]
2. [2] Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology. 2004; 66:10-26. [DOI:10.1007/s00253-004-1642-2]
3. [3] Nazarpour M, Taghizadeh-Alisaraei A, Asghari A, Abbaszadeh-Mayvan A, Tatari A. Optimization of biohydrogen production from microalgae by response surface methodology (RSM). Energy. 2022; 253:124059. [DOI:10.1016/j.energy.2022.124059]
4. [4] Taghizadeh-Alisaraei A, Tatari A, Khanali M, Keshavarzi M. Potential of biofuels production from wheat straw biomass, current achievements and perspectives: a review. Biofuels. 2023; 14(1):79-92. [DOI:10.1080/17597269.2022.2118779]
5. [5] Zabed H, Sahu JN, Boyce AN, Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews. 2016; 66:751-74. [DOI:10.1016/j.rser.2016.08.038]
6. [6] Swain MR, Singh A, Sharma AK, Tuli DK. Bioethanol production from rice-and wheat straw: an overview. Bioethanol Production from Food Crops. 2019: 213-31. [DOI:10.1016/B978-0-12-813766-6.00011-4]
7. [7] Wyman CE, Kumar R, Cai CM. Bioethanol from lignocellulosic biomass. New York: Springer; 2017. [DOI:10.1007/978-1-4939-2493-6_521-3]
8. [8] Xia A, Jacob A, Tabassum MR, Herrmann C, Murphy JD. Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro-and micro-algae. Bioresource Technology. 2016; 205:118-25. [DOI:10.1016/j.biortech.2016.01.025]
9. [9] Pandey A, editor. Handbook of plant-based biofuels. Florida: CRC press; 2008. [DOI:10.1201/9780789038746]
10. [10] Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology. 2006; 69:627-42. [DOI:10.1007/s00253-005-0229-x]
11. [11] Gnansounou E, Dauriat A. Techno-economic analysis of lignocellulosic ethanol: a review. Bioresource Technology. 2010; 101(13):4980-91. [DOI:10.1016/j.biortech.2010.02.009]
12. [12] Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology. 2000; 74(1):25-33. [DOI:10.1016/S0960-8524(99)00161-3]
13. [13] Gu H, Zhu Y, Peng Y, Liang X, Liu X, Shao L, Xu Y, Xu Z, Liu R, Li J. Physiological mechanism of improved tolerance of Saccharomyces cerevisiae to lignin-derived phenolic acids in lignocellulosic ethanol fermentation by short-term adaptation. Biotechnology for Biofuels. 2019; 12:1-4. [DOI:10.1186/s13068-019-1610-9]
14. [14] Kim SK, Westpheling J. Engineering a spermidine biosynthetic pathway in Clostridium thermocellum results in increased resistance to furans and increased ethanol production. Metabolic Engineering. 2018; 49:267-74. [DOI:10.1016/j.ymben.2018.09.002]
15. [15] Taherzadeh MJ, Karimi K. Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In Biofuels 2011 (pp. 287-311). Academic Press. [DOI:10.1016/B978-0-12-385099-7.00012-7]
16. [16] Toquero C, Bolado S. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology. 2014; 157:68-76. [DOI:10.1016/j.biortech.2014.01.090]
17. [17] Zuccaro G, Pirozzi D, Yousuf A. Lignocellulosic biomass to biodiesel. In Lignocellulosic Biomass to Liquid Biofuels 2020 (pp. 127-167). Academic Press. [DOI:10.1016/B978-0-12-815936-1.00004-6]
18. [18] Soltanian S, Aghbashlo M, Almasi F, Hosseinzadeh-Bandbafha H, Nizami AS, Ok YS, Lam SS, Tabatabaei M. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Conversion and Management. 2020; 212:112792. [DOI:10.1016/j.enconman.2020.112792]
19. [19] Tatari AA, Zeynali F. Hemicelluloses: effects, types and their applications as dry strength polymers of paper. Basparesh. 2014; 3(4):13-25. (In Persian)
20. [20] Tatari A, Dehghani Firouzabadi M, Yadollahi R, Ghaffari M. A brief review on biorefinery of natural polymers (hemicelluloses and lignin) in pulp and paper industry. Basparesh. 2015; 4(4):32-43. (In Persian)
21. [21] Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules. 2018; 23(11):2937. [DOI:10.3390/molecules23112937]
22. [22] Sankaran R, Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, Tao Y. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresource Technology. 2020; 298:122476. [DOI:10.1016/j.biortech.2019.122476]
23. [23] Shahnouri SA, Taghizadeh-Alisaraei A, Abbaszadeh-Mayvan A, Tatari A. Catalytic microwave pyrolysis of mushroom spent compost (MSC) biomass for bio-oil production and its life cycle assessment (LCA). Biomass Conversion and Biorefinery. 2022: 1-7. [DOI:10.1007/s13399-022-02988-y]
24. [24] Luo J, Fang Z, Smith Jr RL. Ultrasound-enhanced conversion of biomass to biofuels. Progress in Energy and Combustion Science. 2014; 41:56-93. [DOI:10.1016/j.pecs.2013.11.001]
25. [25] Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and bioprocessing. 2017; 4(1):1-9. [DOI:10.1186/s40643-017-0137-9]
26. [26] Saratale GD, Saratale RG, Banu JR, Chang JS. Biohydrogen production from renewable biomass resources. In Biohydrogen 2019 (pp. 247-277). Elsevier. [DOI:10.1016/B978-0-444-64203-5.00010-1]
27. [27] Deng LZ, Mujumdar AS, Zhang Q, Yang XH, Wang J, Zheng ZA, Gao ZJ, Xiao HW. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes-a comprehensive review. Critical reviews in food science and nutrition. 2019; 59(9):1408-32. [DOI:10.1080/10408398.2017.1409192]
28. [28] Sołowski G, Konkol I, Cenian A. Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. Journal of Cleaner Production. 2020; 267:121721. [DOI:10.1016/j.jclepro.2020.121721]
29. [29] Ho MC, Ong VZ, Wu TY. Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization-a review. Renewable and Sustainable Energy Reviews. 2019; 112:75-86. [DOI:10.1016/j.rser.2019.04.082]
30. [30] Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology. 2016; 199:42-8. [DOI:10.1016/j.biortech.2015.08.085]
31. [31] Maryana R, Ma'rifatun D, Wheni AI, Satriyo KW, Rizal WA. Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia. 2014; 47:250-4. [DOI:10.1016/j.egypro.2014.01.221]
32. [32] Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource Technology. 2010; 101(13):4744-53. [DOI:10.1016/j.biortech.2009.11.080]
33. [33] Toor M, Kumar SS, Malyan SK, Bishnoi NR, Mathimani T, Rajendran K, Pugazhendhi A. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere. 2020; 242:125080. [DOI:10.1016/j.chemosphere.2019.125080]
34. [34] Breisha GZ. Production of 16% ethanol from 35% sucrose. Biomass and Bioenergy. 2010; 34(8):1243-9. [DOI:10.1016/j.biombioe.2010.03.017]
35. [35] Pfeiffer T, Morley A. An evolutionary perspective on the Crabtree effect. Frontiers in molecular biosciences. 2014; 1:17. [DOI:10.3389/fmolb.2014.00017]
36. [36] Ariyajaroenwong P, Laopaiboon P, Salakkam A, Srinophakun P, Laopaiboon L. Kinetic models for batch and continuous ethanol fermentation from sweet sorghum juice by yeast immobilized on sweet sorghum stalks. Journal of the Taiwan Institute of Chemical Engineers. 2016; 66:210-6. [DOI:10.1016/j.jtice.2016.06.023]
37. [37] Wikandari R, Sanjaya AP, Millati R, Karimi K, Taherzadeh MJ. Fermentation inhibitors in ethanol and biogas processes and strategies to counteract their effects. InBiofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels 2019 (pp. 461-499). Academic Press. [DOI:10.1016/B978-0-12-816856-1.00020-8]
38. [38] Verhoeven MD, de Valk SC, Daran JM, van Maris AJ, Pronk JT. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. FEMS Yeast Research. 2018; 18(8): foy075. [DOI:10.1093/femsyr/foy075]
39. [39] Frankó B, Galbe M, Wallberg O. Bioethanol production from forestry residues: A comparative techno-economic analysis. Applied Energy. 2016; 184:727-36. [DOI:10.1016/j.apenergy.2016.11.011]
40. [40] Yadav D, Wati L. Bioconversion of Rice Straw into Ethanol: Fungi and Yeasts are the Backbone Microbiota of the Process. International Journal of Current Microbiology and Applied Sciences. 2019; 8(9):913-20. [DOI:10.20546/ijcmas.2019.809.107]
41. [41] Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology. 1999; 24:151-9. [DOI:10.1016/S0141-0229(98)00101-X]
42. [42] Larsson S, Quintana-Sáinz A, Reimann A, Nilvebrant NO, Jönsson LJ. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. In Twenty-First Symposium on Biotechnology for Fuels and Chemicals: Proceedings of the Twenty-First Symposium on Biotechnology for Fuels and Chemicals, Colorado 2000 (pp. 617-632). Humana Press. [DOI:10.1007/978-1-4612-1392-5_47]
43. [43] Díaz VH, Willis MJ. On the economic optimisation of ethanol production using corn stover feedstock: A new kinetic model, a green recovery system and a de-acetylation step. Energy Conversion and Management. 2019; 202:112200. [DOI:10.1016/j.enconman.2019.112200]
44. [44] Flores-Cosio G, Arellano-Plaza M, Gschaedler A, Amaya-Delgado L. Physiological response to furan derivatives stress by Kluyveromyces marxianus SLP1 in ethanol production. Revista Mexicana de Ingeniería Química. 2018; 17(1):189-202. [DOI:10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Flores]
45. [45] Lin R, Cheng J, Ding L, Song W, Zhou J, Cen K. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresource Technology. 2015; 196:250-5. [DOI:10.1016/j.biortech.2015.07.097]
46. [46] Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Applied and Environmental Microbiology. 2005; 71(12):7866-71. [DOI:10.1128/AEM.71.12.7866-7871.2005]
47. [47] Chandel AK, Kapoor RK, Singh A, Kuhad RC. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology. 2007; 98(10):1947-50. [DOI:10.1016/j.biortech.2006.07.047]
48. [48] Zhu JJ, Yong Q, Xu Y, Yu SY. Comparative detoxification of vacuum evaporation/steam stripping combined with overliming on corn stover prehydrolyzate. In 2009 International Conference on Energy and Environment Technology 2009 (Vol. 3, pp. 240-243). IEEE. [DOI:10.1109/ICEET.2009.523]
49. [49] Santos Bernardes MA. Biofuel Production-Recent Developments and Prospects. Figure. 2011; 4:330. [DOI:10.5772/959]
50. [50] Díaz VH, Tost GO. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation. Bioresource Technology. 2016; 218:174-82. [DOI:10.1016/j.biortech.2016.06.091]
51. [51] Lee JM, Venditti RA, Jameel H, Kenealy WR. Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass and Bioenergy. 2011; 35(1):626-36. [DOI:10.1016/j.biombioe.2010.10.021]
52. [52] Ahmed F, Yan Z, Bao J. Dry biodetoxification of acid pretreated wheat straw for cellulosic ethanol fermentation. Bioresources and Bioprocessing. 2019; 6(1):1-5. [DOI:10.1186/s40643-019-0260-x]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb