جلد 9، شماره 1 - ( 12-1398 )                   جلد 9 شماره 1 صفحات 14-1 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadifar S, Hosseini S M, Mohammadi Goltapeh E, Jahedi A. (2020). Optimal method for production of mycelia biomass of Ganoderma lucidum in sugarcane molasses. Plant Pathol. Sci.. 9(1), 1-14. doi:10.29252/pps.9.1.1
URL: http://yujs.yu.ac.ir/pps/article-1-289-fa.html
احمدی فر سعیده، حسینی سید محسن، محمدی گل تپه ابراهیم، جاهدی اکبر. روش بهینه تولید زیست توده میسلیومی Ganoderma lucidum در ملاس نیشکر دانش بیماری شناسی گیاهی 1398; 9 (1) :14-1 10.29252/pps.9.1.1

URL: http://yujs.yu.ac.ir/pps/article-1-289-fa.html


دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران ، emgoltapeh@gmail.com
چکیده:   (5399 مشاهده)

احمدی­ فر س، حسینی س م، محمدی­ گل­ تپه ا، جاهدی ا (1398) روش بهینه تولید زیست توده میسلیومی Ganoderma lucidum در ملاس نیشکر. دانش بیماری‌شناسی گیاهی 9(1): 14-1DOI: 10.2982/PPS.9.1.1.
مقدمه: قارچ دارویی Ganoderma lucidum به­ عنوان یکی از موثرترین محصول­های طب­ سنتی در شرق آسیا شناخته شده­ است. بدنه بازیدیوکارپ، میسلیوم و اسپور این قارچ حاوی حدود 400 ترکیب مختلف زیست فعال به­ همراه پلی­ ساکاریدها، پپتیدوگلیکان­ها و تری­ترپن­ها، به عنوان گروه­های موثر با ارزش دارویی می­باشند. برای تولید مقیاس بزرگی از زیست­ توده این قارچ حاوی پل ی­ساکاریدهای ضد تومور و سرطان، کشت غوطه ­ور آن یکی از موثق­ترین فن­آوری­ها است. با توجه به اینکه رشد میسلیوم قارچ با عوامل محیطی مختلف مانند pH، دما و مواد مغذی در دسترس آن ارتباط دارد، هدف از این پژوهش تعیین تاثیر pH، دما، غلظت­های مختلف منبع کربن و نیتروژن بر رشد زیست توده قارچ در محیط ملاس نیشکر بود. مواد و روش­ها: بخش اول پژوهش به شناسایی ریختی و مولکولی جدایه ایرانی G. lucidum اختصاص داده شد. سپس تاثیر منبع­های کربن آرابینوز، مالتوز، سلولاز و زایلوز با غلظت­های 0/1، 0/2 و 0/3 درصد، منبع­های نیتروژن عصاره مخمر، MgSo4.7H2O، پپتون وK2Hpo4 با غلظت­های 0/2، 0/3 و 0/4 درصد، اثر pH 4، 4/5، 5، 5/5، دماهای 25، 28 و 32 درجه سلسیوس و تعداد 2 ، 3 یا 4 قرص به قطر  mm25 زادمایه، بر تولید زیست توده میسلیومی G. lucidum در ملاس نیشکر، در آزمایش­های در قالب طرح آماری کاملا تصادفی با چهار تکرار برای هر تیمار در شرایط آزمایشگاهی مطالعه شدند. یافته ­ها: مقایسه میانگین وزن خشک میسلیوم تولیدی در تیمارهای مختلف این آزمایش نشان داد که بین تیمارهای مختلف در سطح احتمال 5درصد اختلاف معنی­ داری وجود دارد. بیشترین توده میسلیومی قارچ با منبع نیتروژن پپتون با غلظت 3/0درصد،  منبع کربن مالتوز با غلظت 2/0درصد ، pH=5 ، دمای 28 درجه سلسیوس و افزودن 3 قرص به قطر 5mm2  زادمایه قارچ در محیط مایع ملاس نیشکر بدست آمد. نتیجه­ گیری: ملاس نیشکر می­تواند به­ عنوان یک محیط ارزان و مقرون­ به­ صرفه برای تولید زیست ­توده G. lucodum مورد استفاده قرار گیرد. این پژوهش برای نخستین بار نشان داد، که می­توان با افزودن پپتون با غلظت 0/3 درصد ، مالتوز با غلظت 0/2 درصد، به ملاس نیشکر، با 3 قرص به قطر 5mm2 زادمایه، در pH=5  و دمای 28 درجه سلسیوس بیشترین زیست توده این قارچ دارویی را تولید کرد.

متن کامل [PDF 952 kb]   (2231 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1398/8/18 | پذیرش: 1398/11/12

فهرست منابع
1. Tavana M, Azizi M, Farsi M, Banesh F (2012) Optimization of medium composition for efficient production of mycelial biomass and extracellular polysaccharides in the submerged culture of Ganoderma lucidum. Iranian Journal of Medicinal and Aromatic Plants 28(3): 423-433.
2. Bao X, Fang J, Li X (2001) Structural characterization and immunomodulating activity of a complex glucan from spores of Ganoderma lucidum. Bioscience, Biotechnology and Biochemistry 65(11):2384-2391. [DOI:10.1271/bbb.65.2384]
3. Barbieri A, Quagliariello V, Del Vecchio V, Falco M, Luciano A, Amruthraj N, Arra C (2017) Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients 9(3):210. https://doi.org/10.3390/nu9030210 [DOI:10.3390/nu9030210‏]
4. Boh B, Berovic M, Zhang J, Zhi-Bin L (2007) Ganoderma lucidum and its pHarmaceutically active compounds. Biotechnology Annual Review 13: 265-301. [DOI:10.1016/S1387-2656(07)13010-6]
5. Chen T, Jie Z X (2001) Taurine in the spores and extract powder of log cultivated Ganoderma lucidum. Acta Edulis Fungi 8: 45-46.
6. Cör D, Knez Ž, Knez Hrnčič M (2018) Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides: A review. Molecules 23(3):649. [DOI:10.3390/molecules23030649]
7. Crueger W, Crueger A (1984) Biotechnology, A Text Book of Industrial Microbiology. Science Tech. Inc., Madison, Wisconsin 180(1):308. [DOI:10.1016/0014-5793(85)80255-6]
8. Fang Q H, Zhong J J (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry 37(7):769-774. [DOI:10.1016/S0032-9592(01)00278-3]
9. Feng Y L, Li W Q, Wu, X Q, Cheng J W, Ma S Y (2010) Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morpHologies. Biochemical Engineering Journal 49(1):104-112. [DOI:10.1016/j.bej.2009.12.002]
10. Hughes D H, Lynch D L, Somers G F (1958) Mushroom analysis, chromatographic identification of the amino acids and carbohydrates in the cultivated mushroom Aqaricus Campestris L. ex-Fries. Journal of Agricultural and Food Chemistry 6(11):850-853.‏ [DOI:10.1021/jf60093a009]
11. Jonathan S G, Fasidi I O (2001) Effect of carbon, nitrogen and mineral sources on growth of Psathyerella atroumbonata (Pegler), a Nigerian edible mushroom. Food Chemistry 72(4): 479-483. [DOI:10.1016/S0308-8146(00)00265-X]
12. Jong S C, Birmingham J M (1992) Medicinal benefits of the mushroom Ganoderma lucidum. Advances in Applied Microbiology. 37: 101-134. [DOI:10.1016/S0065-2164(08)70253-3]
13. Kotzamanidis C H, Roukas T, Skaracis G (2002) Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal of Microbiology and Biotechnology 18(5): 441-448. [DOI:10.1023/A:1015523126741]
14. Lai T, Gao Y, Zhou S (2004) Global marketing of medicinal Ling Zhi mushroom Ganoderma lucidum (W. Curt.: Fr.) Lloyd (Aphyllophoromycetideae) products and safety concerns. International Journal of Medicinal Mushrooms 6(2)189-194. [DOI:10.1615/IntJMedMushr.v6.i2.100]
15. Lee B C, Bae J T, Pyo H B, Choe T B, Kim S W, Hwang H J, Yun J W (2004) Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme and Microbial Technology 35(5):369-376. [DOI:10.1016/j.enzmictec.2003.12.015]
16. Nasreen Z, Kausar T, Nadeem M, Bajwa R (2005) Study of different growth parameters in Ganoderma lucidum. Micología Aplicada International 17(1): 5-8.
17. Pilotti C A, Sanderson F R, Aitken E A, Armstrong W (2004) MorpHological variation and host range of two Ganoderma species from Papua New Guinea. Mycopathologia 158(2): 251-265.‏ [DOI:10.1023/B:MYCO.0000041833.41085.6f]
18. Roukas T (1998) Pretreatment of beet molasses to increase pullulan production. Process Biochemistry 33(8): 805-810. [DOI:10.1016/S0032-9592(98)00048-X]
19. Shah Pooja, Modi A (2018) Optimization of Culture Conditions for Biomass Production of Ganoderma lucidum. International Journal of Current Microbiology (7)2:1882-1889. [DOI:10.20546/ijcmas.2018.702.227]
20. Shih L, Pan K, Hsieh C (2006) Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochemistry 41(5):1129-1135. [DOI:10.1016/j.procbio.2005.12.005]
21. Suberu H A, Lateef A A, Bello I M, Daudu O A Y (2013) Mycelia biomass yield of Ganoderma lucidum mushroom by submerged culture. Nigerian Journal of Technological Research 8(2):64-67. [DOI:10.4314/njtr.v8i2.96700]
22. Supramani S, Ahmad R, Ilham Z, Annuar M S M, Klaus A, Wan-Mohtar W A A Q (2019) Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology. AIMS Microbiology 5(1):19-38. [DOI:10.3934/microbiol.2019.1.19]
23. Takashaki M (1996) Studies on bioactive substances and medical effect of Reishi (Ganoderma lucidum). Foods and Food Ingredients Journal of Japan 167:69-85.
24. Wachtel-Galor S, Yuen J, Buswell J A, Benzie I F (2011) Ganoderma lucidum (Lingzhi or Reishi). In Herbal Medicine Biomolecular and Clinical Aspects. 2nd edition. CRC Press/Taylor and Francis.
25. Wan W A A Q I, Latif N A, Harvey L M, McNeil B (2016) Production of exopolysaccharide by Ganoderma lucidum in a repeated-batch fermentation. Biocatalysis and Agricultural Biotechnology 6:91-101. [DOI:10.1016/j.bcab.2016.02.011]
26. Wasser S P, Sokolov D, Reshetnikov S V, Timor-Tismenetsky M (2000) Dietary supplements from medicinal mushrooms: diversity of types and variety of regulations. International Journal of Medicinal Mushrooms. 2(1):1-19. [DOI:10.1615/IntJMedMushr.v2.i1.10]
27. White J (1954) Yeast Technology. Chapman and Hall, Ltd., London.
28. Xu P, Ding Z Y, Qian Z, Zhao C X, Zhang K C (2008) Improved production of mycelial biomass and ganoderic acid by submerged culture of Ganoderma lucidum SB97 using complex media. Enzyme and Microbial Technology 42(4):325-331. [DOI:10.1016/j.enzmictec.2007.10.016]
29. Zárate-Chaves C A, Romero-Rodríguez M C, Niño-Arias F C, Robles-Camargo J, Linares-Linares M, Rodríguez-Bocanegra M X, Gutiérrez-Rojas I (2013) optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum. Brazilian Journal of Microbiology 44(1):215-223. [DOI:10.1590/S1517-83822013005000032]
30. Moradali MF, Hedjaroude G-A, Mostafavi H, Abbasi M, Ghods S, Sharifi Tehrani A (2007) The genus Ganoderma (Basidiomycota) in Iran. Mycotaxon 99:251-69.
31. Steyaert RL (1972) Species of Ganoderma and related genera mainly of the Bogor and Lieden herbaria. Persoonia 7:55-118.
32. Rogers S O, Bendich A J (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology 5(2):69-76.‏ [DOI:10.1007/BF00020088]
33. Liu S R, Ke B R, Zhang W R, Liu X R, Wu X P (2017) Breeding of new Ganoderma lucidum strains simultaneously rich in polysaccharides and triterpenes by mating basidiospore-derived monokaryons of two commercial cultivars. Scientia Horticulturae 216:58-65.‏ [DOI:10.1016/j.scienta.2016.12.016]
34. Güler P, Kutluer F, Kunduz İ (2011) Screening to Mycelium Specifications of Ganoderma lucidum (Fr.) Karst (Reishi). Hacettepe Journal of Biology and Chemistry 39(4): 397-401.
35. Badalyan S M, Shnyreva A V, Lotti M, Zambonelli A (2015) Genetic resources and mycelial characteristics of several medicinal polypore mushrooms (Polyporales, Basidiomycetes). International Journal of Medicinal Mushrooms 17(4):371-384. [DOI:10.1615/IntJMedMushrooms.v17.i4.60]
36. Galli E F D M, Di Mario F, Rapana P, Lorenzoni P, Angelini R (2003) Copper biosorption by Auricularia polytricha. Letters in Applied Microbiology. 37(2):133-137.‏ [DOI:10.1046/j.1472-765X.2003.01354.x]
37. Xu, C P, Yun J W (2003) Optimization of submerged‐culture conditions for mycelial growth and exo‐biopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and regression analysis. Biotechnology and Applied Biochemistry 38(2):193-199.‏ [DOI:10.1042/BA20030020]
38. Feng J, Zhang J S, Feng N, Yan M Q, Yang Y, Jia W, Lin C C (2017) A novel Ganoderma lucidum G0119 fermentation strategy for enhanced triterpenes production by statistical process optimization and addition of oleic acid. Engineering in Life Sciences 17(4): 430-439.‏ [DOI:10.1002/elsc.201600071]
39. Postemsky P D, Delmastro S E, Curvetto N R (2014) Effect of edible oils and Cu (II) on the biodegradation of rice by-products by Ganoderma lucidum mushroom. International Biodeterioration and Biodegradation 93:25-32.‏ [DOI:10.1016/j.ibiod.2014.05.006]
40. Priatni S, Kosasih W, Budiwati T A, Ratnaningrum D (2017) Production of peptone from boso fish (Oxyeleotris marmorata) for bacterial growth medium. In IOP Conference Series: Earth and Environmental Science 60(1):12009.‏ [DOI:10.1088/1755-1315/60/1/012009]
41. Yee W (2015) Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16. Bioresource Technology 196:1-8.‏ [DOI:10.1016/j.biortech.2015.07.033]
42. Ozmihci S, Kargi F (2007) Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresource Technology 98(16): 2978-2984.‏ [DOI:10.1016/j.biortech.2006.10.005]
43. Zhang Y Y, Bu Y F, Liu J Z (2015) Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum. Folia Microbiologica 60(5): 393-398.‏ [DOI:10.1007/s12223-014-0371-x]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه یاسوج دانش بیماری شناسی گیاهی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | University of Yasouj Plant Pathology Science

Designed & Developed by : Yektaweb