دوره 4، شماره 2 - ( پاییز و زمستان 1402 )                   جلد 4 شماره 2 صفحات 39-24 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moghadas H. (2023). Parabolic Trough Solar Collectors: A Systematic Review of Technology and Optimization. jste. 4(2), 24-39.
URL: http://yujs.yu.ac.ir/jste/article-1-132-fa.html
مقدس هاجر. کلکتورهای خورشیدی سهموی خطی: مرور سیستماتیک فناوری و بهینه‌سازی نشریه مباحث برگزیده در انرِژی 1402; 4 (2) :39-24

URL: http://yujs.yu.ac.ir/jste/article-1-132-fa.html


دانشگاه یاسوج ، h.moghadas@yu.ac.ir
چکیده:   (23 مشاهده)
کلکتورهای سهموی خورشیدی دستگاه‌هایی موفق در تبدل انرژی خورشید به انرژی حرارتی هستند. آنها در مقیاس‌های متنوع کوچک خانگی و بزرگ صنعتی ساخته‌ شده‌اند. بازده و عملکرد این سیستم‌ها به بخش سهموی متمرکز کننده نور، لوله جاذب حرارت، سیستم ردیاب و شرایط محیطی بستگی دارد. مطالعات متعددی در زمینه تأثیر پارامترهای هندسی، پوشش سطوح، خواص نوری و حرارتی اجزای مختلف سیستم و همچنین نوع سیال انتقال دهنده حرارت انجام شده است. بهینه‌سازی هر کدام از این پارامترها منجر به افزایش عملکرد و کاهش چشم‌گیر هزینه ساخت نسبت به خروجی حرارتی مفید می‌شود. استفاده از نمک‌های جاذب، شرایط ذخیره انرژی در ساعات بدون تابش و در نتیجه سیکل دائم تولید برق را فراهم کرده است. مقاومت جنس مواد سازنده اجزای مختلف این سیستم در برآورد هزینه اقتصادی به‌کارگیری این دستگاه‌ها در شرایط کاربردی موثر است. این سیستم با قابلیت فوق‌العاده در تولید انرژی پاک در ابعاد مختلف می‌تواند رقیب و جایگزین مناسبی در دراز مدت برای سوخت‌های‌ فسیلی خصوصاً در مناطق با تابش مناسب مانند ایران باشند.
 
متن کامل [PDF 1489 kb]   (7 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: تخصصي

فهرست منابع
1. Abed N, Afgan I. An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors. International Journal of Energy Research. 2020; 44(7):5117-64. [DOI:10.1002/er.5271]
2. Ajbar W, Parrales A, Huicochea A, Hernández J. Different ways to improve parabolic trough solar collectors' performance over the last four decades and their applications: A comprehensive review. Renewable and Sustainable Energy Reviews. 2022; 156:111947. [DOI:10.1016/j.rser.2021.111947]
3. Akbarzadeh S, Valipour MS. Heat transfer enhancement in parabolic trough collectors: A comprehensive review. Renewable and Sustainable Energy Reviews. 2018; 92:198-218. [DOI:10.1016/j.rser.2018.04.093]
4. al. JMKCDe. Energy Education. 2024 [Available from: J.M.K.C. Donev et al. (2024). Energy Education. Available: https://energyeducation.ca. [Accessed: 2024].
5. Alaidaros AM, AlZahrani AA. Thermal performance of parabolic trough integrated with thermal energy storage using carbon dioxide, molten salt, and oil. Journal of Energy Storage. 2024; 78:110084. [DOI:10.1016/j.est.2023.110084]
6. Alamdari P, Khatamifar M, Lin W. Heat loss analysis review: Parabolic trough and linear Fresnel collectors. Renewable and Sustainable Energy Reviews. 2024; 199:114497. [DOI:10.1016/j.rser.2024.114497]
7. Allam M, Tawfik M, Bekheit M, El-Negiry E. Experimental investigation on performance enhancement of parabolic trough concentrator with helical rotating shaft insert. Sustainability. 2022; 14(22):14667. [DOI:10.3390/su142214667]
8. Al-Maliki WAK, Al-Hasnawi AGT, Abdul Wahhab HA, Alobaid F, Epple B. A Comparison Study on the Improved Operation Strategy for a Parabolic trough Solar Power Plant in Spain. Applied Sciences. 2021; 11(20):9576. [DOI:10.3390/app11209576]
9. Al-Oran O, Shaban NA, Manna R, Ayadi O, A'saf A, Lezsovits F. Performance study of parabolic trough solar collector using hybrid nanofluids under Jordanian weather conditions. Journal of Thermal Analysis and Calorimetry. 2024; 149(9):3981-98. [DOI:10.1007/s10973-024-12961-8]
10. Al-Rabeeah AY, Seres I, Farkas I. Experimental investigation of parabolic trough solar collector thermal efficiency enhanced with different absorber coatings. International Journal of Thermofluids. 2023; 19:100386. [DOI:10.1016/j.ijft.2023.100386]
11. Awan AB, Khan M, Zubair M, Bellos E. Commercial parabolic trough CSP plants: Research trends and technological advancements. Solar Energy. 2020; 211:1422-58. [DOI:10.1016/j.solener.2020.09.072]
12. Bamisile O, Cai D, Adun H, Adedeji M, Dagbasi M, Dika F, et al. A brief review and comparative evaluation of nanofluid application in solar parabolic trough and flat plate collectors. Energy Reports. 2022; 8:156-66. [DOI:10.1016/j.egyr.2022.08.078]
13. Bhattacharya K, Paradeshi S, Karthik M, VR S, Bibin B, Edison G. Analyzing the performance of a parabolic trough solar collector with advanced techniques adopted in the absorber-a review. Engineering Research Express. 2024; 6(1):012001. [DOI:10.1088/2631-8695/ad1c0b]
14. Conrado LS, Rodriguez-Pulido A, Calderón G. Thermal performance of parabolic trough solar collectors. Renewable and Sustainable Energy Reviews. 2017; 67:1345-59. [DOI:10.1016/j.rser.2016.09.071]
15. Dewitte S, Clerbaux N. Measurement of the Earth radiation budget at the top of the atmosphere-A review. Remote Sensing. 2017; 9(11):1143. [DOI:10.3390/rs9111143]
16. Donga RK, Karn A. Improving the thermal performance of parabolic trough solar collectors by incorporating cylindrical attachments within the absorber tube. Applied Thermal Engineering. 2025; 273:126587. [DOI:10.1016/j.applthermaleng.2025.126587]
17. Edalatpour A, Hosseinalipour S, Moghimi M. An experimental analysis of the performance of direct absorption parabolic trough collectors with laser-processed copper surfaces. Scientific Reports. 2025; 15(1):8921. [DOI:10.1038/s41598-025-92689-z] [PMID] []
18. El-Sebaey MS, Mousavi SM, Sathyamurthy R, Panchal H, Essa FA. A detailed review of various design and operating parameters affecting the thermal performance augmentation of flat-plate solar collectors. International Journal of Ambient Energy. 2024; 45(1):2351100. [DOI:10.1080/01430750.2024.2351100]
19. Farsijani E, Shafizadeh A, Mobli H, Akbarzadeh A, Tabatabaei M, Peng W, et al. Enhanced performance and stability of a solar pond using an external heat exchanger filled with nano-phase change material. Energy. 2024; 292:130423. [DOI:10.1016/j.energy.2024.130423]
20. Fatemi SAZ, Zgham W, Shirzad S, Serat Z. Feasibility Study of Theoretical Efficiency Calculation for Flat-Plate Collectors in Solar Water Heating Systems. Archives of Advanced Engineering Science. 2025; 3(2):73-82. [DOI:10.47852/bonviewAAES32021384]
21. Felsberger R, Buchroithner A, Gerl B, Schweighofer B, Preßmair R, Mitter T, et al. Optical performance and alignment characterization of a parabolic trough collector using a multi-junction CPV solar cell. Solar Energy. 2022; 239:40-9. [DOI:10.1016/j.solener.2022.04.058]
22. Felsberger R, Buchroithner A, Gerl B, Wegleiter H. Conversion and Testing of a Solar Thermal Parabolic Trough Collector for CPV-T Application. Energies. 2020; 13(22):6142. [DOI:10.3390/en13226142]
23. Fredriksson J, Eickhoff M, Giese L, Herzog M. A comparison and evaluation of innovative parabolic trough collector concepts for large-scale application. Solar Energy. 2021; 215:266-310. [DOI:10.1016/j.solener.2020.12.017]
24. Gharat PV, Bhalekar SS, Dalvi VH, Panse SV, Deshmukh SP, Joshi JB. Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC)-A review. Renewable and Sustainable Energy Reviews. 2021; 145:111002. [DOI:10.1016/j.rser.2021.111002]
25. Ghritlahre HK, Verma M. Solar air heaters performance prediction using multi-layer perceptron neural network-a systematic review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2025; 47(1):7682-99. [DOI:10.1080/15567036.2021.1923869]
26. Gupta SK, Saxena A. A progressive review of hybrid nanofluid utilization in solar parabolic trough collector. Materials Today: Proceedings. 2023 [DOI:10.1016/j.matpr.2023.06.204] [PMID]
27. Gupta SK. A short & updated review of nanofluids utilization in solar parabolic trough collector. Materials Today: Proceedings. 2023. [DOI:10.1016/j.matpr.2023.06.204] [PMID]
28. Hamada MA, Khalil H, Abou Al-Sood M, Sharshir SW. An experimental investigation of nanofluid, nanocoating, and energy storage materials on the performance of parabolic trough collector. Applied Thermal Engineering. 2023; 219:119450. [DOI:10.1016/j.applthermaleng.2022.119450]
29. Hegde AK, Pai R, Karanth KV. Energy and exergetic analysis of a solar air heater for enhanced thermohydraulic performance with side wall treatment. Energy. 2025; 315:134333. [DOI:10.1016/j.energy.2024.134333]
30. Herruzo JC, Imponenti L, Valverde J, Shininger R, Price H. A coupled fluid-thermo-mechanical evaluation of various freeze recovery strategies for molten salt parabolic trough collectors. Solar Energy. 2024; 267:112250. [DOI:10.1016/j.solener.2023.112250]
31. Kaluba V, Mohamad K, Ferrer P. Experimental and simulated performance of hot mirror coatings in a parabolic trough receiver. Applied Energy. 2020; 257:114020. [DOI:10.1016/j.apenergy.2019.114020]
32. Kim H, Chinnasamy V, Ham J, Cho H. Parabolic trough collectors: A comprehensive review of design innovations, optimization studies and applications. Energy Conversion and Management. 2025; 327:119534. [DOI:10.1016/j.enconman.2025.119534]
33. Krishna Y, Faizal M, Saidur R, Ng K, Aslfattahi N. State-of-the-art heat transfer fluids for parabolic trough collector. International Journal of Heat and Mass Transfer. 2020; 152:119541. [DOI:10.1016/j.ijheatmasstransfer.2020.119541]
34. Kumar A, Sharma M, Thakur P, Thakur VK, Rahatekar SS, Kumar R. A review on exergy analysis of solar parabolic collectors. Solar Energy. 2020; 197:411-32. [DOI:10.1016/j.solener.2020.01.025]
35. Kumar S, Kumar A. Effect of mono/hybrid nanofluids and passive techniques on thermal performance of parabolic trough solar collector: A review. Energy Sources Part A: Recovery, Utilization & Environmental Effects. 2023; 45(1). [DOI:10.1080/15567036.2023.2178551]
36. Kumaresan G, Sudhakar P, Santosh R, Velraj R. Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors. Renewable and Sustainable Energy Reviews. 2017; 77:1363-74. [DOI:10.1016/j.rser.2017.01.171]
37. Li K, Ru J, Wu D, Ru Y, Alkhalifah T, Marzouki R. Exergy destruction and heat transfer of parabolic trough collector using porous medium: Machine learning algorithms. Applied Thermal Engineering. 2025; 276:126922. [DOI:10.1016/j.applthermaleng.2025.126922]
38. Li Q, Zhang Y, Wen Z-X, Qiu Y. An evacuated receiver partially insulated by a solar transparent aerogel for parabolic trough collector. Energy Conversion and Management. 2020; 214:112911. [DOI:10.1016/j.enconman.2020.112911]
39. Li X, Bai F. A Review on the Thermal Modeling Method for Molten Salt Receivers of Concentrating Solar Power Tower Plants. Energies. 2025; 18(2):19961073. [DOI:10.3390/en18020292]
40. Loni R, Sharifzadeh M. Performance comparison of a solar parabolic trough concentrator using different shapes of linear cavity receiver. Case Studies in Thermal Engineering. 2024; 60:104603. [DOI:10.1016/j.csite.2024.104603]
41. Mahdhi J, Hamdi F, Ebadi H, Bouabidi A, Ennetta R, Savoldi L. Experimental Study of a Stationary Parabolic Trough Collector with Modified Absorbers for Domestic Water Heating. Energies. 2025; 18(13):3261. [DOI:10.3390/en18133261]
42. Malan A, Kumar KR. A comprehensive review on optical analysis of parabolic trough solar collector, Sustain. Energy Technol. Assessments. 46 (2021) 101305. [DOI:10.1016/j.seta.2021.101305]
43. Malviya R, Agrawal A, Baredar PV. A comprehensive review of different heat transfer working fluids for solar thermal parabolic trough concentrator. Materials Today: Proceedings. 2021; 46:5490-500. [DOI:10.1016/j.matpr.2020.09.240]
44. Mashhadian A, Heyhat MM, Mahian O. Improving environmental performance of a direct absorption parabolic trough collector by using hybrid nanofluids. Energy Conversion and Management. 2021; 244:114450. [DOI:10.1016/j.enconman.2021.114450]
45. Mbelu OV, Adeyinka AM, Yahya DI, Adediji YB, Njoku H. Advances in solar pond technology and prospects of efficiency improvement methods. Sustainable Energy Research. 2024; 11(1):18. [DOI:10.1186/s40807-024-00111-5]
46. Mohamad A, Orfi J, Alansary H. Heat losses from parabolic trough solar collectors. International journal of energy research. 2014; 38(1):20-8. [DOI:10.1002/er.3010]
47. Mohamad K. Exploring the influence of optical and thermal parameters on the effectiveness of parabolic trough collector receiver units. Clean Energy. 2024; 8(4):15-33. [DOI:10.1093/ce/zkae033]
48. Mohamed L, Abdelkader R, Laroussi K, Singh AR, Bajaj M, Tuka MB. Comprehensive techno-economic optimization and performance analysis of molten salt concentrated solar power tower plants in Algeria. Scientific Reports. 2025; 15(1):14456. [DOI:10.1038/s41598-025-97236-4] [PMID] []
49. Naveenkumar R, Ravichandran M, Stalin B, Ghosh A, Karthick A, Aswin LSRL, et al. Comprehensive review on various parameters that influence the performance of parabolic trough collector. Environmental Science and Pollution Research. 2021; 28(18):22310-33. [DOI:10.1007/s11356-021-13439-y] [PMID]
50. Nawsud ZA, Altouni A, Akhijahani HS, Kargarsharifabad H. A comprehensive review on the use of nano-fluids and nano-PCM in parabolic trough solar collectors (PTC). Sustainable Energy Technologies and Assessments. 2022; 51:101889. [DOI:10.1016/j.seta.2021.101889]
51. Nazir MS, Shahsavar A, Afrand M, Arıcı M, Nižetić S, Ma Z, et al. A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model. Sustainable energy technologies and assessments. 2021; 45:101103. [DOI:10.1016/j.seta.2021.101103]
52. Ntegmi GJB, Babikir MH, Chara-Dakou VS, Chopkap HN, Mounkang O, Kenfack AZ, et al. Thermo-economic and environmental analysis of a Dish-Stirling/Stirling thermal solar refrigerator for cold production. Renewable and Sustainable Energy Reviews. 2025; 216:115701. [DOI:10.1016/j.rser.2025.115701]
53. Olia H, Torabi M, Bahiraei M, Ahmadi MH, Goodarzi M, Safaei MR. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. Applied Sciences. 2019; 9(3):463. [DOI:10.3390/app9030463]
54. Omeiza LA, Abid M, Subramanian Y, Dhanasekaran A, Bakar SA, Azad AK. Challenges, limitations, and applications of nanofluids in solar thermal collectors-a comprehensive review. Environmental Science and Pollution Research. 2023:1-29. [DOI:10.1007/s11356-023-30656-9] [PMID]
55. Pal RK, Kumar R. Investigations of thermo-hydrodynamics, structural stability, and thermal energy storage for direct steam generation in parabolic trough solar collector: a comprehensive review. Journal of Cleaner Production. 2021; 311:127550. [DOI:10.1016/j.jclepro.2021.127550]
56. Panduro EAC, Finotti F, Largiller G, Lervåg KY. A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors. Applied Thermal Engineering. 2022; 211:118346. [DOI:10.1016/j.applthermaleng.2022.118346]
57. Poorani B, Poyyamozhi N, Prabhakar P. Optimization of thermal performance in solar Ponds: Synergistic effects of phase change materials and Fe3O4 nanoparticles. Thermal Science and Engineering Progress. 2025; 59:103385. [DOI:10.1016/j.tsep.2025.103385]
58. Raheem A, Siddique W, Awais M, Qureshi K, Nawaz R, Shabbir MA. To evaluate the performance of molten salt coolants in parabolic trough collectors (PTCs). International Journal of Energy for a Clean Environment. 2025; 26:13-33. [DOI:10.1615/InterJEnerCleanEnv.2024051859]
59. Raza SH, Qamar A, Noor F, Riaz F, Usman M, Farooq M, et al. Experimental analysis of thermal performance of direct absorption parabolic trough collector integrating water based nanofluids for sustainable environment applications. Case Studies in Thermal Engineering. 2023; 49:103366. [DOI:10.1016/j.csite.2023.103366]
60. Saini P, Singh S, Kajal P, Dhar A, Khot N, Mohamed M, et al. A review of the techno-economic potential and environmental impact analysis through life cycle assessment of parabolic trough collector towards the contribution of sustainable energy. Heliyon. 2023; 9(7). [DOI:10.1016/j.heliyon.2023.e17626] [PMID] []
61. Sainz-Mañas M, Bataille F, Caliot C, Vossier A, Flamant G. Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review. Energy. 2022; 260:124916. [DOI:10.1016/j.energy.2022.124916]
62. Sandeep H, Arunachala U. Solar parabolic trough collectors: A review on heat transfer augmentation techniques. Renewable and Sustainable Energy Reviews. 2017; 69:1218-31. [DOI:10.1016/j.rser.2016.11.242]
63. Selvam L, Hossain I, Aruna M, Venkatesh R, Karthigairajan M, Prabagaran S, et al. Enhancement and characteristics study of parabolic trough solar collector by using magnesium oxide coating on solar tubes. Journal of Thermal Analysis and Calorimetry. 2024;149(21):12001-10. [DOI:10.1007/s10973-024-13576-9]
64. Sharma M, Jilte R. A review on passive methods for thermal performance enhancement in parabolic trough solar collectors. International Journal of Energy Research. 2021; 45(4):4932-66. [DOI:10.1002/er.6212]
65. Shokrnia M, Cagnoli M, Grena R, D'Angelo A, Lanchi M, Zanino R. Comparative Techno-Economic Analysis of Parabolic Trough and Linear Fresnel Collectors with Evacuated and Non-Evacuated Receiver Tubes in Different Geographical Regions. Processes. 2024; 12(11):2376. [DOI:10.3390/pr12112376]
66. Sivakumar C, Robinson Y, Joe Patrick Gnanaraj S, Jithendra K. Analysis of the performance of V-type solar stills coupled with flat plate collectors and the potential use of artificial intelligence. Desalination and Water Treatment. 2024; 318:100365. [DOI:10.1016/j.dwt.2024.100365]
67. Stanek B, Węcel D, Bartela Ł, Rulik S. Solar tracker error impact on linear absorbers efficiency in parabolic trough collector-Optical and thermodynamic study. Renewable Energy. 2022; 196:598-609. [DOI:10.1016/j.renene.2022.07.021]
68. Tagle-Salazar PD, Nigam KD, Rivera-Solorio CI. Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards. Green Processing and Synthesis. 2020; 9(1):595-649. [DOI:10.1515/gps-2020-0059]
69. Usamentiaga R, Fernández A, Carús JL. Evaluation of dust deposition on parabolic trough collectors in the visible and infrared spectrum. Sensors. 2020; 20(21):6249. [DOI:10.3390/s20216249] [PMID] []
70. Venkatesh R, Logesh K, Kumar R, Singh S, Singh PK, Vijay SM, et al. Thermal and exergy analysis of solar air heater enhanced with sodium carbonate decahydrate and Magnesium sulfate heptahydrate PCM: Performance evaluation. Applied Thermal Engineering. 2025; 258:124556. [DOI:10.1016/j.applthermaleng.2024.124556]
71. Wang Q, Yao Y, Shen Z, Yang H. A hybrid parabolic trough solar collector system integrated with photovoltaics. Applied Energy. 2023; 329:120336. [DOI:10.1016/j.apenergy.2022.120336]
72. Zaboli M, Mousavi Ajarostaghi SS, Saedodin S, Saffari Pour M. Thermal Performance Enhancement Using Absorber Tube with Inner Helical Axial Fins in a Parabolic Trough Solar Collector. Applied Sciences. 2021; 11(16):7423. [DOI:10.3390/app11167423]
73. Zhang Z, Zheng G, Wang L, Ding N, Xu J. Environmental, energy and economic assessment of thermionic enhanced solar dish-Stirling power generation. Solar Energy. 2025; 285:113125. [DOI:10.1016/j.solener.2024.113125]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه مباحث برگزیده در انرژی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb