Volume 4, Issue 2 (11-2023)                   jste 2023, 4(2): 1-10 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sajjadnejad M. (2023). Essentials of corrosion phenomena in lithium-ion batteries. jste. 4(2), 1-10. doi:10.61186/jste.4.2.1
URL: http://yujs.yu.ac.ir/jste/article-1-128-en.html
Yasouj University , m.sajjadnejad@yahoo.com
Abstract:   (219 Views)
Nowadays, lithium-ion batteries have been commercialized and extensive research is done on improving their properties. The things that are currently the major part of the research are reducing the price of the battery, increasing the energy density of the battery, increasing the lifespan and improving the safety of the battery. In military applications and aviation industries, special attention is paid to battery reliability and safety. The gradual degradation of the materials used in lithium-ion batteries over a long period of time has a negative effect on the electrical performance, lifespan and safety of the battery. This is through increasing the electrical resistance of the battery and even cutting the internal connection of the battery, producing corrosion products and creating passive films on the surface of the material, creating pollutants inside the battery that may react with active materials and leading to loss of uniformity in the material enters the battery and the electrolyte is destroyed. Most of the materials used in lithium-ion batteries were modified after identifying these problems in the battery structure. This article mainly deals with the phenomenon of corrosion in positive and negative current collectors in lithium-ion batteries.
 
Full-Text [PDF 971 kb]   (72 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Linden D. Batteries and fuel cells. Standard Handbook of Electronic Engineering. McGraw-Hill, 2005.
2. [2] Hansson CM. The impact of corrosion on society. Metallurgical and Materials Transactions A. 2011; 42:2952-2962. [DOI:10.1007/s11661-011-0703-2]
3. [3] Revie RW. Uhlig's corrosion handbook. John Wiley & Sons. Inc., New York, USA. 2000.
4. [4] Postlethwaite J. and Nesic S. Erosion-Corrosion: Recognition and Control. Uhlig's Corrosion Handbook. 2011: 907-913. [DOI:10.1002/9780470872864.ch65]
5. [5] Marcus P and Oudar J. Corrosion mechanisms in theory and practice. New York: Marcel Dekker. 2002. [DOI:10.1201/9780203909188]
6. [6] Peabody AW and Bianchetti RL. Peabody's control of pipeline corrosion. NACE International. The Corrosion Society. 2001.
7. [7] Uhlig HH and Revie RW. Corrosion and corrosion control. 1985.
8. [8] Sun X, Sun K, Chen C, Sun H, Cui B. Controlled preparation and surface structure characterization of carbon-coated lithium iron phosphate and electrochemical studies as cathode materials for lithium ion battery. International Journal of Materials and Chemistry. 2012; 2(5):218-24. [DOI:10.5923/j.ijmc.20120205.06]
9. [9] Braithwaite JW, Gonzales A, Lucero SJ. Degradation of the materials of construction in Li-ion batteries. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); 1997. [DOI:10.2172/461265]
10. [10] Ghali E. Aluminum and aluminum alloys. Uhlig's Corrosion Handbook. 2011; 28:715-45. [DOI:10.1002/9780470872864.ch54]
11. [11] Buchheit RG, Zavadil KR, Scully JR, Knight TO. The electrochemical behavior of the Al3Ta intermetallic compound and pitting in two‐phase Al‐Ta alloys. Journal of the Electrochemical Society. 1995;142(1):51. [DOI:10.1149/1.2043932]
12. [12] Buchheit RG, Cunningham M, Jensen H, Kendig MW, Martinez MA. A correlation between salt spray and electrochemical impedance spectroscopy test results for conversion-coated aluminum alloys. Corrosion. 1998; 54(1):61-72. [DOI:10.5006/1.3284829]
13. [13] Zhao M, Dewald HD, Lemke FR, Staniewicz RJ. Electrochemical Stability of Graphite‐Coated Copper in Lithium‐Ion Battery Electrolytes. Journal of the Electrochemical Society. 2000; 147(11):3983. [DOI:10.1149/1.1394007]
14. [14] Abouimrane A, Ding J, Davidson IJ. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources. 2009; 189(1):693-6. [DOI:10.1016/j.jpowsour.2008.08.077]
15. [15] Krause LJ, Lamanna W, Summerfield J, Engle M, Korba G, Loch R, Atanasoski R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of power sources. 1997; 68(2):320-5. [DOI:10.1016/S0378-7753(97)02517-2]
16. [16] Prabakar SR, Hwang YH, Bae EG, Lee DK, Pyo M. Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries. Carbon. 2013; 52:128-36. [DOI:10.1016/j.carbon.2012.09.013]
17. [17] Braithwaite JW, Gonzales A, Nagasubramanian G, Lucero SJ, Peebles DE, Ohlhausen JA, Cieslak WR. Corrosion of lithium‐ion battery current collectors. Journal of the electrochemical society. 1999; 146(2):448. [DOI:10.1149/1.1391627]
18. [18] Arora P, White RE, Doyle M. Capacity fade mechanisms and side reactions in lithium‐ion batteries. Journal of the Electrochemical Society. 1998; 145(10):3647. [DOI:10.1149/1.1838857]
19. [19] Leidheiser H. The corrosion of copper, tin, and their alloys. 1971.
20. [20] Sieradzki K, Sabatini RL, Newman RC. Stress-corrosion cracking of copper single crystals. Metallurgical Transactions A. 1984; 15:1941-6. [DOI:10.1007/BF02664907]
21. [21] Yang L, Takahashi M, Wang B. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling. Electrochimica Acta. 2006; 51(16):3228-34. [DOI:10.1016/j.electacta.2005.09.014]
22. [22] Pugh EN, Montague WG, Westwood AR. Stress-corrosion cracking of copper. Corrosion Science. 1966; 6(7):345-IN17. [DOI:10.1016/S0010-938X(66)80041-0]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Selected Topics in Energy

Designed & Developed by : Yektaweb