1. [1] Arshad A, Ali HM, Habib A, Bashir MA, Jabbal M, Yan Y. Energy and exergy analysis of fuel cells: A review. Thermal Science and Engineering Progress. 2019; 9:308-21. [
DOI:10.1016/j.tsep.2018.12.008]
2. [2] Adams TA, Nease J, Tucker D, Barton PI. Energy conversion with solid oxide fuel cell systems: A review of concepts and outlooks for the short-and long-term. Industrial & Engineering Chemistry Research. 2013; 52(9):3089-111. [
DOI:10.1021/ie300996r]
3. [3] Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation-A review. Renewable and Sustainable Energy Reviews. 2013; 20:430-42. [
DOI:10.1016/j.rser.2012.11.031]
4. [4] Chandan A, Hattenberger M, El-Kharouf A, Du S, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review. Journal of Power Sources. 2013; 231:264-78. [
DOI:10.1016/j.jpowsour.2012.11.126]
5. [5] Mert SO, Dincer I, Ozcelik Z. Performance investigation of a transportation PEM fuel cell system. International Journal of Hydrogen Energy. 2012; 37(1):623-33. [
DOI:10.1016/j.ijhydene.2011.09.021]
6. [6] Mamaghani AH, Najafi B, Shirazi A, Rinaldi F. Exergetic, economic, and environmental evaluations and multi-objective optimization of a combined molten carbonate fuel cell-gas turbine system. Applied Thermal Engineering. 2015; 77:1-1. [
DOI:10.1016/j.applthermaleng.2014.12.016]
7. [7] Kundu A, Jang JH. Applications-Portable Portable Devices. Fuel Cells. 2009; 39-45. [
DOI:10.1016/B978-044452745-5.00349-X]
8. [8] Lucia U. Overview on fuel cells. Renewable and Sustainable Energy Reviews. 2014; 30:164-9. [
DOI:10.1016/j.rser.2013.09.025]
9. [9] McLean GF, Niet T, Prince-Richard S, Djilali N. An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy. 2002; 27(5):507-26. [
DOI:10.1016/S0360-3199(01)00181-1]
10. [10] Gülzow E. Alkaline fuel cells. Fuel cells. 2004; 4(4):251-5. [
DOI:10.1002/fuce.200400042]
11. [11] Neergat M, Shukla AK. A high-performance phosphoric acid fuel cell. Journal of Power Sources. 2001; 102:317-21. [
DOI:10.1016/S0378-7753(01)00766-2]
12. [12] Sammes N, Bove R, Stahl K. Phosphoric acid fuel cells: Fundamentals and applications. Current Opinion in Solid State and Materials Science. 2004; 8(5):372-8. [
DOI:10.1016/j.cossms.2005.01.001]
13. [13] Kirubakaran A, Jain S, Nema RK. A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews. 2009; 13(9):2430-40. [
DOI:10.1016/j.rser.2009.04.004]
14. [14] Minh NQ, Shirley Meng Y. Future energy, fuel cells, and solid-oxide fuel-cell technology. MRS Bulletin. 2019; 44:682-3. [
DOI:10.1557/mrs.2019.209]
15. [15] Baldi F, Moret S, Tammi K, Maréchal F. The role of solid oxide fuel cells in future ship energy systems. Energy. 2020; 194:116811 [
DOI:10.1016/j.energy.2019.116811]
16. [16] Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science. 2019; 12(2):463-91. [
DOI:10.1039/C8EE01157E]
17. [17] Elmer T, Worall M, Wu S, Riffat SB. Emission and economic performance assessment of a solid oxide fuel cell micro-combined heat and power system in a domestic building. Applied Thermal Engineering. 2015; 90:1082-9. [
DOI:10.1016/j.applthermaleng.2015.03.078]
18. [18] Colson CM, Nehrir MH. Evaluating the benefits of a hybrid solid oxide fuel cell combined heat and power plant for energy sustainability and emissions avoidance. IEEE Transactions on Energy Conversion. 2010; 26(1):140-8. [
DOI:10.1109/TEC.2010.2070506]
19. [19] Hawkes AD, Aguiar P, Croxford B, Leach MA, Adjiman CS, Brandon NP. Solid oxide fuel cell micro combined heat and power system operating strategy: Options for provision of residential space and water heating. Journal of Power Sources. 2007; 164(1):260-71. [
DOI:10.1016/j.jpowsour.2006.10.083]
20. [20] Zink F, Lu Y, Schaefer L. A solid oxide fuel cell system for buildings. Energy Conversion and Management. 2007; 48(3):809-18. [
DOI:10.1016/j.enconman.2006.09.010]
21. [21] Chitsaz A, Hosseinpour J, Assadi M. Effect of recycling on the thermodynamic and thermoeconomic performances of SOFC based on trigeneration systems; A comparative study. Energy. 2017; 124:613-24. [
DOI:10.1016/j.energy.2017.02.019]
22. [22] Hawkes A, Leach M. Solid oxide fuel cell systems for residential micro-combined heat and power in the UK: Key economic drivers. Journal of power sources. 2005; 149:72-83. [
DOI:10.1016/j.jpowsour.2005.01.008]
23. [23] Ranjbar F, Chitsaz A, Mahmoudi SS, Khalilarya S, Rosen MA. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell. Energy Conversion and Management. 2014; 87:318-27. [
DOI:10.1016/j.enconman.2014.07.014]
24. [24] El-Gohary MM. Economical analysis of combined fuel cell generators and absorption chillers. Alexandria Engineering Journal. 2013; 52(2):151-8. [
DOI:10.1016/j.aej.2012.12.004]
25. [25] Shariatzadeh OJ, Refahi AH, Rahmani M, Abolhassani SS. Economic optimisation and thermodynamic modelling of SOFC tri-generation system fed by biogas. Energy Conversion and Management. 2015; 105:772-81. [
DOI:10.1016/j.enconman.2015.08.026]
26. [26] Trendewicz AA, Braun RJ. Techno-economic analysis of solid oxide fuel cell-based combined heat and power systems for biogas utilization at wastewater treatment facilities. Journal of Power Sources. 2013; 233:380-93. [
DOI:10.1016/j.jpowsour.2013.01.017]
27. [27] Mehrpooya M, Akbarpour S, Vatani A, Rosen MA. Modeling and optimum design of hybrid solid oxide fuel cell-gas turbine power plants. International Journal of Hydrogen Energy. 2014 ; 39(36):21196-214. [
DOI:10.1016/j.ijhydene.2014.10.077]
28. [28] Zhang X, Chan SH, Li G, Ho HK, Li J, Feng Z. A review of integration strategies for solid oxide fuel cells. Journal of Power Sources. 2010; 195(3):685-702. [
DOI:10.1016/j.jpowsour.2009.07.045]
29. [29] Emadi MA, Chitgar N, Oyewunmi OA, Markides CN. Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery. Applied Energy. 2020; 261:114384. [
DOI:10.1016/j.apenergy.2019.114384]
30. [30] Mehrpooya M, Dehghani H, Moosavian SA. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system. Journal of Power Sources. 2016; 306:107-23. [
DOI:10.1016/j.jpowsour.2015.11.103]
31. [31] Aghaie M, Mehrpooya M, Pourfayaz F. Introducing an integrated chemical looping hydrogen production, inherent carbon capture and solid oxide fuel cell biomass fueled power plant process configuration. Energy conversion and management. 2016;124:141-54. [
DOI:10.1016/j.enconman.2016.07.001]