Volume 2, Issue 1 ((Spring and Summer) 2015)                   Iranian J. Seed Res. 2015, 2(1): 97-108 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bemany S, Mahdavi B, Torabi B. Effect of alkaline stress on germination, growth and physiological traits of two safflower cultivars. Iranian J. Seed Res.. 2015; 2 (1) :97-108
URL: http://yujs.yu.ac.ir/jisr/article-1-62-en.html
Vali-e-Asr University of Rafsanjan , b.mahdavi@vru.ac.ir
Abstract:   (42231 Views)

In order to study the effect of alkaline stress on seed germination and seedling biochemical characteristics of two safflower cultivars, a laboratory experiment was conducted based on a completely randomized design with three replications in the Vali-e-Asr University of Rafsanjan. Experimental factors included the levels of alkaline with sodium bicarbonate (0, 10, 20, 30, 40, 50 and 60 mM) and two cultivars of safflower (Soffeh and 411). The result showed that alkaline stress had significant effects on seed germination characteristics. Increasing alkaline stress reduced percentage and rate of germination, length and dry weights of shoots and roots, K+ concentration and K+/Na+. However, alkaline increased malondialdehyde content, proline, total carbohydrate and Na+ concentration. In alkaline stress condition, there was a significant difference between cultivars in length of shoots and roots, proline content and K+ concentration. 411 cultivar showed notable superiority compared to Soffeh cultivar. Both cultivars had the highest malondialdehyde at 60 mM alkalinity and the lowest malondialdehyde obtained in Soffeh cultivar and control. The result of this research showed that 411 cultivar was better than Soffeh cultivar in proline and soluble sugar content, but these two cultivars had no significant differences in other traits.

Full-Text [PDF 741 kb]   (2918 Downloads)    
Type of Study: Research | Subject: Seed Physiology
Received: 2015/02/22 | Accepted: 2015/06/16

1. Agrawal, R.L. 2004. Seed technology. Oxford and IBH publishing Co. LTD, New Dehli. 350 p.
2.  Al-Ahmadi, M.J., and Kafi, M. 2007. Cardinal temperatures for germination of Kochia scoparia (L.). Journal of Arid Environments, 68(2): 308-314. [DOI:10.1016/j.jaridenv.2006.05.006]
3.  Ashraf, M., and Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1): 3-16. [DOI:10.1016/j.plantsci.2003.10.024]
4.  Bates, L.S., Waldren, R.P., and Teare, F.D. 1973. Rapid determination of free proline from water-stress studies. Plant and Soil, 39(1): 205-207. [DOI:10.1007/BF00018060]
5. Bohnert, H.J., Nelson, D.E., and Jensen, R.G. 1995. Adaptations to environment stresses. The Plant Cell, 7(7): 1099-1111. https://doi.org/10.2307/3870060 [DOI:10.1105/tpc.7.7.1099] [PMID] [PMCID]
6.  Campbell, S.A., and Nishio, J.N. 2000. Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponics growth system. Journal of Plant Nutrition, 23(6): 741-757. [DOI:10.1080/01904160009382056]
7. Dubois, M., Gilles, K.A., Hamilton, J.K., Reber, P.A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356. [DOI:10.1021/ac60111a017]
8.  Elouaer, M.A., and Hannachi C. 2012. Seed priming to improve germination and seedling growth of safflower (Carthamus tinctorius) under salt stress. Eurasian Journal of BioSciences, 6: 76-84. [DOI:10.5053/ejobios.2012.6.0.9]
9. Guan, B., Zhou, D., Zhang, H., Tian, Y., Japhet, W., and Wang, P. 2009. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature. Journal of Arid Environments, 73(1): 135-138. [DOI:10.1016/j.jaridenv.2008.08.009]
10. Guo, R., Shi, L., and Yang, Y. 2009. Germination, growth, osmotic adjustment and ionic balance of wheat in response to saline and alkaline stresses. Soil Science and Plant Nutrition, 55(5): 667-679. [DOI:10.1111/j.1747-0765.2009.00406.x]
11.  Khan, M.N., Siddiqui, M.H., Mohammad, F., Naeem, M., and Khan, M.M.A. 2010. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defense system and osmoprotectant accumulation. Acta Physiologiae Plantarum, 32(1): 121-132. [DOI:10.1007/s11738-009-0387-z]
12. Li, X., Liu, J., Zhang, Y.T., Lin, J., and Mu, C. 2009. Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses. Soil Science and Plant Nutrition, 55(5): 680-684. [DOI:10.1111/j.1747-0765.2009.00408.x]
13. Liu, J., Guo, W.Q., and Shi, D.C. 2010. Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions. Photosynthetica, 48(2): 278-286. [DOI:10.1007/s11099-010-0034-3]
14. Munns, R., 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2): 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x] [PMID]
15. Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. [DOI:10.1146/annurev.arplant.59.032607.092911] [PMID]
16. Patil, N.S., Apradh, V.T., and Karadge, B.A. 2012. Effects of alkali stress on seed germination and seedlings growth of Vigna aconitifolia (Jacq.) Marechal. Pharmacognosy Journal, 4(34): 77-80. [DOI:10.5530/pj.2012.34.13]
17. Shi, D., and Wang, D. 2005. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant and Soil, 271(1-2): 15-26. [DOI:10.1007/s11104-004-1307-z]
18.  Shi, D., Sheng, Y., Zhao, K. 1997. Stress effects of mixed salts with various salinities on the seedlings of Aneurolepidium chinense. Acta Botanica Sinica, 40(12): 1136-1142.
19.  Ungar, I.A. 1995. Seed germination and seed-bank ecology in halophytes. In: Kigel, J. and Galili, G. (ed), Seed Development and Germination. Marcel Dekker, New York. Pp: 599-628
20.  Vos, C.H.R., Schat, H., Waal, M.A.M., Vooijs, R., and Ernst, W.H.O. 1991. Increased to copper-induced damage of the root plasma membrane in copper tolerant Silene cucubalus. Plant Physiology, 82(2): 523-528. https://doi.org/10.1034/j.1399-3054.1991.820407.x [DOI:10.1111/j.1399-3054.1991.tb02942.x]
21.  Walters, M.B., and Reich, P.B. 2000. Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology, 81(7): 1887-1901. [DOI:10.1890/0012-9658(2000)081[1887:SSNSAG]2.0.CO;2]
22. Weber, H., Chetelat, A., Reymond, P., and Farmer, E.E. 2004. Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. The Plant Journal, 37(6): 877-888. [DOI:10.1111/j.1365-313X.2003.02013.x] [PMID]
23. Yang, C., Chong, J., Kim, C., Li, C., Shi, D., and Wang, D. 2007. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 294(1-2): 263-276. [DOI:10.1007/s11104-007-9251-3]
24.  Yang, C., Jianaer, A., and Shi, D. 2006. Effects of complex salt and alkali conditions on the germination of seeds of Puccinellia tenui flora. Acta Prataculturae Sinica, 15(5): 45-51.
25.  Yang, C., Shi, D., and Wang, D. 2008. Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 56(2): 179-190. [DOI:10.1007/s10725-008-9299-y]
26. Yang, C.V., Xu, H.H., Wang, L.L., Liu, J., Shi, D.C., and Wang, D.L. 2009. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 47(1): 79-86. [DOI:10.1007/s11099-009-0013-8]
27.  Zhang, D.P., Cao, B.H., Jia, B., and Tang, Q. 2008. Germination and physiological response of Albizia julibrissin seeds under alkali-Salt stress. Scientia Silvae Sinicae, 44(9):157-161.
28.  Zhang, J.T., and Chun-Sheng, M.U. 2009. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius. Soil Science and Plant Nutrition, 55(5): 685-697. [DOI:10.1111/j.1747-0765.2009.00411.x]
29.  Zribi, K., and Gharsalli, M. 2002. Effect of bicarbonate on growth and iron nutrition of pea. Journal of Plant Nutrition, 25(10): 2143-2149. [DOI:10.1081/PLN-120014066]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.