(Autumn & Winter)                   Back to the articles list | Back to browse issues page

XML Persian Abstract Print


Agriculture Research, Education and Extension Organization(AREO), Seed and Plant Certification and Registration Institute (SPCRI) , a.hamidi@areeo.ac.ir
Abstract:   (1015 Views)
Extended abstract
Introduction: Seed germination has always been of interest to plant ecologists due to its key role in plant population establishment. Also, due to the importance of this process in seed certification, this phenomenon is of interest to control and seed certification experts. Temperature, access to sufficient humidity, and the presence of light in light-sensitive species for seed germination are considered to be the most important natural factors for seed germination. Additionally, the time required for germination and sufficient early seedling growth are important to determine the potential seed germination. Therefore, determining the temperature, the need or lack of light, as well as the time required for germination and the suitable substrate for planting seeds, are of great importance in the process of seed certification laboratory tests.
Materials and Methods: In order to determine the optimal conditions for seed germination of three species of Salicornia persica, S. persepolitana, and S. bigelovi, the seeds were grown under three constant temperatures of 20, 25, and alternating temperatures of 20-25 °C (8-16 hours light-dark), two culture beds (top-of-paper (TP) and between-paper (BP)), and two germination periods of 7 and 12 days.
Results: The results showed that the seeds of S. bigelovi species had the highest percentage of normal seedlings at 25 °C constant temperature for 7 days in the top-of-paper (TP) substrate. Also, the seeds of S. persica had the highest percentage of normal seedlings at 20-25 °C alternating temperature for 7 days in the top-of-paper (TP) substrate. S. persepolitana seeds at 25 °C constant temperature for 7 days on the top-of-paper (TP) substrate had the highest percentage of normal seedlings. S. persica, S. bigelovi, and S. persepolitana seeds had a higher percentage of normal seedlings in both germination durations and temperatures, respectively.
Conclusions: The results of this research showed that the seeds of the studied Salicornia species did not require light for germination. Also, in terms of temperature requirements, the time required for germination, and the substrate, they differed from each other. The seeds of S. persica reached the maximum percentage of normal seedlings at 20-25 °C alternating temperatures. The seeds of S. bigelovi and S. persica species needed a shorter time to reach the maximum percentage of normal seedlings, while the seeds of S. persepolitana needed a longer time to germinate and reach the maximum percentage of normal seedlings. Therefore, it was determined that the best temperature, duration, and substrate to achieve the maximum percentage of normal seedlings in the standard seed germination test were 25 °C for 7 days and top-of-paper (TP) substrate for S. bigelovi, 20-25 °C alternating temperature for 7 days and top-of-paper (TP) substrate for S. persica, and 20 °C constant temperature for 7 days and top-of-paper (TP) substrate for S. persepolitana species.

Highlights:
  1. Light was not necessary for the studied Salicornia species seeds' germination.
  2. The studied Salicornia species seeds' germination response to optimum temperature was different.
  3. The studied Salicornia species seeds' optimum germination duration was different.
     
Type of Study: Research | Subject: General
Received: 2024/05/29 | Revised: 2025/01/26 | Accepted: 2024/11/3

References
1. Aghaleh, M., Niknam, V., Ebrahimzadeh, H. and Razavi, K. 2009. Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2): 243-248. [DOI:10.1007/s10535-009-0046-7]
2. Ajmal Khan, M., Gul, B. and Weber, D.J. 2000. Germination responses of Salicornia rubra to temperature and salinity. Journal of Arid Environments, 45: 207-214. [DOI:10.1006/jare.2000.0640]
3. Akhani, H. 2003: Salicornia persica Akhani (Chenopodiaceae) a remarkable new species from central Iran. Linzer Biologische Beiträge, 35(1): 607-612.
4. Akhani, H. 2008. Taxonomic revision of the genus Salicornia L. (Chenopodiaceae) in central and southern of Iran. Pakistan Journal of Botany, 40(4): 1635-1655.
5. Akhani, H., 2006. Biodiversity of halophytic and sabkha ecosystems in Iran: 71-88. In: Khan, M.A., Böer, B., Kust, G.S. and Barth, H.-J., (Eds.). Sabkha Ecosystems. Volume II: West and Central Asia. Springer, 263p. [DOI:10.1007/978-1-4020-5072-5_6]
6. Balouchi, H., Soltani Khankahdani, V., Moradi, A., Gholamhoseini, M., Piri, R., Heydari, S.Z. and Dedicova, B. 2023. Seed fatty acid changes germination response to temperature and water potentials in six sesame (Sesamum indicum L.) cultivars: Estimating the cardinal temperatures. Agriculture, 13(10): 1-17. [DOI:10.3390/agriculture13101936]
7. Baskin, C.C. 2003. Breaking physical dormancy in seeds - focussing on the lens. New Phytologist, 158(2): 229-232. [DOI:10.1046/j.1469-8137.2003.00751.x]
8. Baskin, J.M. and Baskin, C.C., 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, CA, USA.
9. Benvenuti, S., Macchia, M., and Miele, S. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science, 49: 528-535. [DOI:10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2]
10. Boer, B. 1997. An introduction to the climate of the United Arab Emirates. Journal of Arid Environments, 35: 3-16. [DOI:10.1006/jare.1996.0162]
11. Calone, R., Sanoubar, R., Noli, E. and Barbanti, L. 2020. Assessing Salicornia europaea tolerance to salinity at seed germination stage. Agriculture, 10(29):1-11. [DOI:10.3390/agriculture10020029]
12. Cárdenas-Pérez, S., Piernik, A., Chanona-Pérez, J.J., Grigore, M.N. and Perea-Flores, M.J. 2021. An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environmental and Experimental Botany, 191: 104606. [DOI:10.1016/j.envexpbot.2021.104606]
13. Copeland, L.O. and Mc Donald, M.B., 2004. Principles of Seed Science and Technology. Springer, Dordrecht, Netherlands.
14. De Melo, P.A.F.R., M. Id. P. Cavalcanti, E. U. Alves, C. C. Martins and L. R. de Araújo, 2017. Substrates and temperatures in the germination of Eriotheca gracilipes seeds. Revista Ciência Agronômica, 48(2): 303-309. [DOI:10.5935/1806-6690.20170035]
15. Don, R. and Ducournau, S. 2018. ISTA Handbook on Seedling Evaluation Fourth Edition. International Seed Testing Association (ISTA), Zürichstr. 50, 8303 Bassersdorf, Switzerland.
16. El-Keblawy A Gairola, S., Bhatt, A. and Mahmoud, T. 2017. Effects of maternal salinity on salt tolerance during germination of Suaeda aegyptiaca: a facultative halophyte in the Arab Gulf desert. Plant Species Biology, 32: 45-53. [DOI:10.1111/1442-1984.12127]
17. El-Keblawy, A. and Bhatt, A. 2015. Aerial seed bank affects germination behavior of two small seeded halophytes in the Arabian deserts. Journal of Arid Environments, 117: 10-17. [DOI:10.1016/j.jaridenv.2015.02.001]
18. El-Keblawy, A., Al-Shamsi, N. and Mosa, K. 2018. Effect of maternal habitat, temperature and light on germination and salt tolerance of Suaeda vermiculata, a habitat in different halophyte of arid Arabian deserts. Seed Science Research, 28: 140-147. [DOI:10.1017/S0960258518000144]
19. Ellias, S.G., Copeland, L.O., McDonald, M.B. and Baalbaki, R.Z. 2012. Seed Testing. Michigan State University Press.
20. FAO. 2011. Proceedings of the global forum on salinization and climate change (GFSCC2010). Rome, Italy: Food and Agriculture Organization of the United Nations, 110 pp.
21. Franklin, K.A. and Whitelam, G.C., 2005. Phytochromes and shade-avoidance responses in plants. Annals of Botany, 96: 169-175. [DOI:10.1093/aob/mci165] [PMID] []
22. García-Galindo, E., Nieto-Garibay, A., Troyo-Diéguez, E., Lucero-Vega, G., Murillo-Amador, B., Ruiz-Espinoza, F.H. and Fraga-Palomino, H.C. 2021. Germination of Salicornia bigelovii (Torr.) under shrimp culture effluents and the application of vermicompost leachate for mitigating salt stress. Agronomy, 11(424): 1-15. [DOI:10.3390/agronomy11030424]
23. Guan, B., Zhou, D., Zhang, H., Tian, Japhet, Y., W. and Wang, P. 2009. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature. Journal of Arid Environment, 73: 135-138. [DOI:10.1016/j.jaridenv.2008.08.009]
24. Gul, B., Khan, M.A. and Weber, D.J. 2000. Alleviation salinity and dark-enforced dormancy in Allenrolfea occidentalis seeds under various thermo periods. Australian Journal of Botany, 48: 745-752. [DOI:10.1071/BT99069]
25. Holeski, L.M., Jander, G. and Agrawal, A.A. 2012. Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology & Evolution, 27: 618-626. [DOI:10.1016/j.tree.2012.07.011] [PMID]
26. International Seed Testing Association (ISTA), 2022. International Rules for Seed Testing. International Seed Testing Association, Zürich, Switzerland.
27. Khan, M. A. Gul, B. and Weber, D. J. 2000. Germination responses of Salicornia rubra to temperature and salinity. Journal of Arid Environments, 45: 207-214. [DOI:10.1006/jare.2000.0640]
28. Khan, M.A. and Gul, B. 1998. High salt tolerance in the germinating dimorphic seeds of Arhrocnemum macrostachyum. International Journal of Plant Sciences, 159: 826-832. [DOI:10.1086/297603]
29. Khan, M.A. and Weber, D.J. 1986. Factors influencing seed germination in Salicorniapacifica var. utahensis. American Journal of Botany, 73: 1163-1167. [DOI:10.1002/j.1537-2197.1986.tb08562.x]
30. Khan, M.A., Gul, B., 2006. Halophyte seed germination. In: Khan, M.A., Weber, D.J. (Eds.), Ecophysiology of High Salinity Tolerant Plants. Springer, the Netherlands, pp. 11-30. [DOI:10.1007/1-4020-4018-0_2]
31. Khan, M.A., Gul, B., Weber, D.J., 2001. Seed germination characteristics of Halogeton glomeratus. Canadian Journal of Botany, 79: 1189-1194. [DOI:10.1139/b01-097]
32. Lee, S.J., Jeon, H-J., Jeong, J-H. and Chung, N-J. 2016. Germination is enhanced by removal of the Funiculus in the Halophyte Glasswort (Salicornia herbacea). Horticulture, Environment, and Biotechnology, 57(4): 323-329. [DOI:10.1007/s13580-016-0108-7]
33. Moriuchi KS., Friesen, M.L., Cordeiro, M.A., Badri, M., Vu, W.T., Main, B.J., Elarbi Aouani, M., Nuzhdin, S.V., Strauss, S.Y. and von Wettberg, E.J.B. 2016. Salinity adaptation and the contribution of parental environmental effects in Medicago truncatula. PloS One, 11(3): 1-19. [DOI:10.1371/journal.pone.0150350] [PMID] []
34. Nouri Akandi, Z., Goshasbi, F. and Mahforouzi, R. 2021. Study of seed germination and seedling growth of Salicornia species in different concentrations of sodium chloride. Chemistry Proceeding, 3.
35. Orlovsky, N., Japakova, U., Zhang, H. and Volis, S. 2016. Effect of salinity on seed germination, growth and ion content in dimorphic seeds of Salicornia europaea L. (Chenopodiaceae). Plant Diversity, 38: 183-189. [DOI:10.1016/j.pld.2016.06.005] [PMID] []
36. Oveisi, M., Alizadeh, H., Lorestani, S.A., Esmaili, A., Sadeghnejad, N., Piri, R., Gonzalez-Andujar, J.L. and Müller-Schärer, H. 2024. Triangle area model (TAM) for predicting germination: An approach to enhance hydrothermal time model applications. Current Plant Biology, 39: 1-15. [DOI:10.1016/j.cpb.2024.100356]
37. Patel, S. 2016. Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech, 6(104): 1-10. [DOI:10.1007/s13205-016-0418-6] [PMID] []
38. Ranal, M. and De Santana, D.G. 2006. How and why to measure the germination process? Revista Brasilian Botanique, 29(1): 1-11 [DOI:10.1590/S0100-84042006000100002]
39. Rueda-Puente, E.O., Garcı'a-Hernández, J.L., Preciado-Rangel, P., Murillo-Amador, B., Tarazón-Herrera, M.A., Flores-Herna'ndez, A. Holguin-Peña, J., Aybar, A.N., Barro'nHoyos, J.M., Weimers, D., Mwandemele, O., Kaaya, G., Mayoral, J.L. and Troyo-Die'guez, E. 2007. Germination of Salicornia bigelovii ecotypes under stressing conditions of temperature and salinity and ameliorative effects of plant growth-promoting bacteria. Journal of Agronomy and Crop Science, 193: 167-176. [DOI:10.1111/j.1439-037X.2007.00254.x]
40. Singh, D., Buhmann, A.K., Flowers, T.J., Seal, C.E. and Papenbrock, J. 2014. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions AoB Plants, 6: 1-20. [DOI:10.1093/aobpla/plu071] [PMID] []
41. Soltani, A. and Maddah, V. 2010. Simple, Applied Programs for Education and Research in Agronomy, Shahid Beheshti University Press. Tehran, Iran. [In Persian]
42. Ventura, V. and Sagi, M. 2013. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92:144-153. [DOI:10.1016/j.envexpbot.2012.07.010]
43. Zerai, D.B., Glenn, E.P., Chatervedi, R., Lu, Z., Mamood, A.N., Nelson, S.G. and Ray, D.T. 2010. Potential for the improvement of Salicornia bigelovii through selective breeding. Ecological Engineering, 36: 730-739. [DOI:10.1016/j.ecoleng.2010.01.002]
44. Zia, S. and Khan, M.A. 2004. Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Canadian Journal of Botany, 82(2): 151-157. [DOI:10.1139/b03-118]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Seed Research

Designed & Developed by : Yektaweb


This work is licensed under a Creative Commons Attribution 4.0 International License.